Busbars and distribution

POWER GUIDE 2009 / B00K 12

INTRO
 Protection and control of operating circuits are the basi functions of a distribution panel. But upstream there is another function, possibly more discreet, but just as essential: distribution.

Even more than for the protection and control functions, the selection and setup of distribution equipment require an approach that combines selection of products (number of outputs, cross-sections, conductor types, connection method) and checking the operating conditions (current-carrying capacity, short circuits, isolation, etc.) in multiple configurations.

Depending on the power installed, distribution is carried out via distribution blocks (up to 400 A) or via busbars (250 A to 4000 A). The former must be selected according to their characteristics (see page 32), while the atter must be carefully calculated and sized according to requirements. (see page 06).
Distribution and standards 02
Statutory conditions for the protection of branch or distributed lines 04
Sizing busbars 06
Determining the usable cross-section of the bars. 06
Checking the permissible thermal stress 12
Determining the distances between supports 13
Magnetic effects associated with busbars 20
Checking the insulation characteristics 23
Shaping and connecting bars 26
Rigid bars 26
Flexible bars 30
Current transformers (CT) 31
Distribution blocks 32
Characteristics of distribution blocks 33
Phase balancing 36
Legrand distribution blocks 40
Choice of products 46

Distribution and standards

Distribution can be defined as supplying power to a number of physically separate and individually protected circuits from a single circuit.

Depending on the circuits to be supplied, distribution will be via busbars (flat or C-section copper or aluminium bars, see p. 06), via prefabricated distribution blocks (power distribution blocks, modular distribution blocks, distribution terminal blocks, see p. 32) or via simple supply busbars. According to the standards, a device providing protection agains short circuits and overloads must be placed at the point where a change of cross-section, type, installaion method or composition leads to a reduction in the current-carrying capacity (IEC 60364-4-43).

${ }^{\wedge}$ Branch busbar in cable sleeve: C-section aluminium bars
f it were applied to the letter, this rule would lead o over-sizing of cross-sections for fault conditions. The standard therefore allows for there to be no protection device at the origin of the branch line subject to two conditions.

Upstream device P_{1} effectively protects the branch line S_{2}
.. or the branch line S_{2} is less than three metres ong, is not installed near any combustible materials and every precaution has been aken to limit the risks of short circuits. of short circuits. There is no other tap-of or power socket on the of protection P_{2}.

Multi-level distribution

This layout can be used for exam le when several distribution blocks ($2^{\text {nd }}$ level) are supplied rom a single busbar (1 $1^{\text {st }}$ level). off at the first level ($11_{1}, I_{2}$, etc) $)$ is greater than It, a protection device P_{2} must be provided on S_{2}.

\wedge Distribution via supply busbars

Distribution

and standards (continued)

STATUTORY CONDITIONS FOR PROTECTING

 BRANCH OR DISTRIBUTED LINES
1 SUMMARY OF THE GENERAL PRINCIPLE FOR CHECKING THERMAL STRESS

For insulated cables and conductors, the breaking time of any current resulting from a short circuit occurring at any point must not be longer than the time taken for the temperature of the conductors to
reach their permissible limit. reach their permissible limit.
This condition can be verified by checking that the thermal stress $\mathrm{K}^{2} \mathrm{~S}^{2}$ that the conductor can withstand s greater than the thermal stress (energy $l^{2} t$) that the protection device allows to pass.

2 CHECKING THE PROTECTION CONDITIONS OF THE BRANCH LINE(S) WITH REGARD TO THE THERMAL

 STRESSESFor branch lines with smaller cross-sections ($\mathrm{S}_{2}<\mathrm{S}_{1}$), check that the stress permitted by the branch line is check that the stress permitted by the branch line is device P_{1}. The permissible thermal stress values $\mathrm{K}^{2} \mathrm{~S}^{2}$ can be easily calculated using the k values given in the table below:

The maximum energy values limited by the devices are given in the form of figures (for example $55,000 A^{2}$ for modular devices with ratings up to 32 A or in the form of limitation curves (see Book 5).

3 CHECKING THE PROTECTION CONDITIONS USING THE "TRIANGLE RULE'

The short-circuit protection device P_{1} placed at the origin A of the line can be considered to effectively protect branch S_{2} as long as the length of the branch busbar system S_{2} does not exceed a certain length, which can be calculated using the triangle rule. - The maximum length L_{1} of the conductor with crosssection S_{1} corresponds to the portion of the circuit AB that is protected against short circuits by protection device P_{1} placed at point A

- The maximum length L_{2} of the conductor with crosssection S_{2} corresponds to the portion of the circuit AM that is protected against short circuits by protection device P_{1} placed at point A.
These maximum lengths correspond to the minimum short circuit for which protection device P_{1} can operat (see Book 4).

K values for conductors								
Property/Condition	Type of insulation of the conductor							
	PVC Thermoplastic		PVC Thermoplastic $90^{\circ} \mathrm{C}$		EPR XLPE Thermosetting	Rubber $60^{\circ} \mathrm{C}$ Thermosetting	Mineral	
Conductor cross-sect. mm^{2}	$\leqslant 300$	> 300	$\leqslant 300$	> 300				
Initial temperature ${ }^{\circ} \mathrm{C}$	70		90		90	60	70	105
Final temperature ${ }^{\circ} \mathrm{C}$	160	140	160	140	250	200	160	250
K values								
Copper conductor	115	103	100	86	143	141	115	135 -115
Aluminium conductor	76	68	66	57	94	93	-	-
Connections soldered with tin solder for copper conductors	115	-	-	-	-	-	-	-

K values for conductors

S_{1} corresponds to the cross-section of the main onductor and S_{2} to the cross-section of the branch onductor.
maximum length of the branch conductor with cross-section S_{2} that is protected against shor ircuits by protection device P_{1} placed at point A is epresented by segment ON. It can be seen using this epresentation that the protected length of the branch ne decreases the further away the tap-off point is from protection P_{1}, up to the prohibition of any S_{2} triangle, B.
his method can be applied to short-circuit protec ion devices and those providing protection against verloads respectively, as long as device P_{2} effectivety protects line S_{2} and there is no other tap-off between points A and O .

43 METRE RULE APPLIED TO

 OVERLOAD PROTECTION DEVICESWhen protection device P_{1} placed at the head of line S_{1} does not have any overload protection function or its haracteristics are not compatible with the overload protection of the branch line S_{2} lvery long circuits, significant reduction in cross-section), it is possible move device 2 up 1 mem tap-off as long as there is no tap-off or power socke this portion of busbar system and the risk of sho ircuit, fire and injury is reduced to the misk or sheathing separation from hot and damaging parts)

5 EXEMPTION FROM PROTECTION AGAINST OVERLOADS

The diagram above illustrates three examples of tap-offs $\left(S_{1}, S_{2}, S_{3}\right)$ where it is possible not to provide any overload protection or simply not to check whethe this condition is met.
Busbar system S_{2} is effectively protected against Berloads by P_{1} and the busbar system does not have ny tap-offs or power sockets upstream of P_{2}
Busbar system S_{3} is not likely to have overload curents travelling over it and the busbar system does not have any tap-offs or power sockets upstream of P_{3} Busbar system S_{4} is intended for communication, ontrol, signalling and similar type functions and the usbar system does not have any tap-offs or power sockets upstream of P_{4}.

Sizing busbars

The busbar constitutes the real "backbone of any distribution assembly. The main busbar and branch busbars supply and distribute the energy.

Busbars can be created using copper or aluminium bars. Flat copper bars are used for busbars up to 4000 A with Legrand supports. They provide great flexibility of use, but require machining on request (see p. 26). Legrand aluminium bars are made of C-section rails. Connection is carried out without drilling, using special hammer head screws.

DETERMINING THE USABLE CROSS-SECTION OF THE BARS

The required cross-section of the bars is determined according to the operating current, the protection index of the enclosure and after checking the short circuit thermal stress
The currents are named in accordance with the definitions in standard IEC 60947-1 applied to the usual operating conditions for a temperature rise Δ of the bars which does not exceed $65^{\circ} \mathrm{C}$.

They are used for busbars up to 1600 A , or 3200 A by doubling the supports and the bars. The electrical and mechanical characteristics of Legrand busbar supports, and strict compliance with the maximum installation distances, ensure isolation between the poles and that the bars can resist the electrodynamic forces.

$\triangle \Delta \quad$ Currents according

- le rated operaing curtent to be taken into
le: rated operating current to be taken into consideration in enclosures with natural ventilation or in panels with IP $\leqslant 30$ protection index lambient internal temperature $\leqslant 25^{\circ} \mathrm{C}$.
- Ithe: thermal current in enclosure corresponding to the most severe installation conditions. Sealed enclosures do not allow natural air change, as the IP ter than 30 lambient internal temperature $\leqslant 50^{\circ} \mathrm{C}$).

Parallel bars

ne current-carrying capacity in n bars is less tha n times the current-carrying capacity in one bar. Use $\mathrm{n}=1.6$ to 1.8 for a group of 2 bars, $\mathrm{n}=2.2$ to 2.4 for 3 bars and $\mathrm{n}=2.7$ to 2.9 for 4 bars. The wider the bars, the more coefficient n is affected he more difficult they are to cool and the higher the mutual inductance effects.
The permissible current density is not therefore Am² for small bars and falls to $1 \mathrm{~A} / \mathrm{mm}^{2}$ for groups of large bars.

1 C-SECTION ALUMINIUM BARS (supports Cat. Nos. 373 66/67/68/69)

2 RIGID COPPER BARS

2.1. Mounting bars edgewise on supports Cat. Nos. 373 10/15/20/21/22/23

Rigid flat copper bars - edgewise mounting						
le (A) IP $\leqslant 30$	Ithe (A) IP > 30	Cat. No.	Dim. (mm)	$1^{2} \mathrm{t}\left(\mathrm{A}^{2} \mathrm{~s}\right)$	$\mathrm{Icw}_{15}(\mathrm{~A})$	crro
110	80	37388	12×2	1.2×10^{7}	3430	
160	125	37389	12×4	4.7×10^{7}	6865	
200	160	37433	15×4	7.4×10^{7}	8580	
250	200	37434	18×4	1×10^{8}	10,295	
280	250	37438	25×4	2.1×10^{8}	14,300	
330	270	37418	25×5	3.2×10^{8}	17,875	
450	400	37419	32×5	5.2×10^{8}	22,900	
700	630	37440	50×5	1.1×10^{9}	33,750	
1150	1000	37440	$2 \times(50 \times 5)$	4.5×10^{9}	67,500	
800	700	37441	63×5	1.8×10^{9}	42,500	
1350	1150	37441	$2 \times(63 \times 5)$	7.2×10^{9}	85,500	\wedge Stepped busbar
950	850	37459	75×5	2.5×10^{9}	50,600	in cable sleeve
1500	1300	37459	$2 \times(75 \times 5)$	1×10^{10}	101,000	with supports
1000	900	37443	80×5	2.9×10^{9}	54,000	Cat. No. 37310
1650	1450	37443	$2 \times(80 \times 5)$	1.2×10^{10}	108,000	
1200	1050	37446	100×5	4.5×10^{9}	67,500	
1900	1600	37446	$2 \times(100 \times 5)$	1.8×10^{10}	135,000	

Sizing busbars

(continued)

2.2. Mounting bars edgewise on supports Cat. Nos. 373 24/25

^ Simply rotate the isolating supports to take 5 or 10 mm thick bars

^ 1 to 4 bars, 5 mm thick, per pole

^ 1 to 3 bars, 10 mm thick, per pole

Rigid flat copper bars, 5 mm thick

le (A) IP $\leqslant 30$	Ithe (A) IP > 30	Number	Dim. (mm)	$1^{2}+\left(A^{2} s\right)$	$\mathrm{Icw}_{15}(\mathrm{~A})$
700	630		50×5	1.14×10^{9}	33,750
1180	1020	2	50×5	4.56×10^{9}	67,500
1600	1380	3	50×5	1.03×10^{10}	101,250
2020	1720	4	50×5	1.82×10^{10}	135,000
800	700	1	63×5	1.81×10^{9}	42,525
1380	1180	2	63×5	7.23×10^{9}	85,050
1900	1600	3	63×5	1.63×10^{10}	127,575
2350	1950	4	63×5	2.89×10^{10}	170,100
950	850	1	75×5	2.56×10^{9}	50,625
1600	1400	2	75×5	1.03×10^{10}	101,250
2200	1900	3	75×5	2.31×10^{10}	151,875
2700	2300	4	75×5	4.10×10^{11}	202,500
1000	900	1	80×5	2.92×10^{9}	54,000
1700	1480	2	80×5	1.17×10^{10}	108,000
2350	2000	3	80×5	2.62×10^{10}	162,000
2850	2400	4	80×5	4.67×10^{10}	216,000
1200	1050	1	100×5	4.56×10^{9}	67,500
2050	1800	2	100×5	1.82×10^{10}	135,000
2900	2450	3	100×5	4.10×10^{10}	202,500
3500	2900	4	100×5	7.29×10^{10}	270,000
1450	1270	1	125×5	7.12×10^{9}	84,375
2500	2150	2	125×5	2.85×10^{10}	168,750
3450	2900	3	125×5	6.41×10^{10}	253,125
4150	3450	4	125×5	1.14×10^{11}	337,500
1750	1500	1	$160 \times 5{ }^{(1)}$	1.17×10^{10}	108,000
3050	2450	2	$160 \times 5^{(1)}$	4.67×10^{10}	216,000
4200	3300	3	$160 \times 5^{(1)}$	1.05×10^{11}	324,000
5000	3800	4	$160 \times 5^{(1)}$	1.87×10^{11}	432,000
(1) Stainless steel threaded assembly rod, diameter 8 to be supplied separately and cut to length					

[^0]| Rigid flat copper bars, 10 mm thick | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| le (A) IP $\leqslant 30$ | Ithe (A) IP > 30 | Number | Dim. 1 mm) | $1^{2}+\left(A^{2}\right.$ s $)$ | $\mathrm{Icw}_{15}(\mathrm{~A})$ |
| 950 | 850 | 1 | 50×10 | 4.56×10^{9} | 67,500 |
| 1680 | 1470 | 2 | 50×10 | 1.82×10^{10} | 135,000 |
| 2300 | 2030 | 3 | 50×10 | 4.10×10^{10} | 202,500 |
| 1150 | 1020 | 1 | 60×10 | 6.56×10^{9} | 81,000 |
| 2030 | 1750 | 2 | 60×10 | 2.62×10^{10} | 162,000 |
| 2800 | 2400 | 3 | 60×10 | 5.90×10^{10} | 243,000 |
| 1460 | 1270 | 1 | 80×10 | 1.17×10^{10} | 108,000 |
| 2500 | 2150 | 2 | 80×10 | 4.67×10^{10} | 216,000 |
| 3450 | 2900 | 3 | 80×10 | 1.05×10^{11} | 324,000 |
| 1750 | 1500 | 1 | 100×10 | 1.82×10^{10} | 135,000 |
| 3050 | 2550 | 2 | 100×10 | 7.29×10^{10} | 270,000 |
| 4150 | 3500 | 3 | 100×10 | 1.64×10^{11} | 405,000 |
| 2000 | 1750 | 1 | 120×10 | 2.62×10^{10} | 162,000 |
| 3600 | 2920 | 2 | 120×10 | 1.05×10^{11} | 324,000 |
| 4800 | 4000 | 3 | 120×10 | 2.63×10^{11} | 486,000 |

Sizing busbars
 (continued)

2.3. Mounting bars flatwise on supports Cat. Nos. 373 24/25

Rigid flat copper bars, 5 mm thick

le (A) IP $\leqslant 30$	Ithe (A) IP > 30	Number	Dim. (mm)	$1^{2}+\left(A^{2} s\right)$	$\mathrm{Icw}_{15}(\mathrm{~A})$
500	420	1	50×5	1.14×10^{9}	33,750
750	630	2	50×5	4.56×10^{9}	67,500
1000	900	3	50×5	1.03×10^{10}	101,250
1120	1000	4	50×5	1.82×10^{10}	135,000
600	500	1	63×5	1.81×10^{9}	42,525
750	630	2	63×5	7.23×10^{9}	85,050
1100	1000	3	63×5	1.63×10^{10}	127,575
1350	1200	4	63×5	2.89×10^{10}	170,100
700	600	1	75×5	2.56×10^{9}	50,625
1000	850	2	75×5	1.03×10^{10}	101,250
1250	1100	3	75×5	2.31×10^{10}	151,875
1600	1400	4	75×5	4.10×10^{11}	202,500
750	630	1	80×5	2.92×10^{9}	54,000
1050	900	2	80×5	1.17×10^{10}	108,000
1300	1150	3	80×5	2.62×10^{10}	162,000
1650	1450	4	80×5	4.67×10^{10}	216,000
850	700	1	100×5	4.56×10^{9}	67,500
1200	1050	2	100×5	1.82×10^{10}	135,000
1600	1400	3	100×5	4.10×10^{10}	202,500
1900	1650	4	100×5	7.29×10^{10}	270,000
1000	800	1	125×5	7.12×10^{9}	84,375
1450	1250	2	125×5	2.85×10^{10}	168,750
1800	1600	3	125×5	6.41×10^{10}	253,125
2150	1950	4	125×5	1.14×10^{11}	337,500
1150	900	1	$160 \times 5^{(1)}$	1.17×10^{10}	108,000
1650	1450	2	$160 \times 5^{(1)}$	4.67×10^{10}	216,000
2000	1800	3	$160 \times 5^{(1)}$	1.05×10^{11}	324,000
2350	2150		$160 \times 5^{(1)}$	1.87×10^{11}	432,000

Rigid flat copper bars, 10 mm thick

le (A) IP $\leqslant 30$	Ithe (A) IP > 30	Number	Dim. (mm)	$1^{2}+\left(A^{2} s\right)$	$\mathrm{Icw}_{15}(\mathrm{~A})$
880	650	1	50×10	4.56×10^{9}	67,500
1250	1050	2	50×10	1.82×10^{10}	135,000
2000	1600	3	50×10	4.10×10^{10}	202,500
1000	800	1	60×10	6.56×10^{9}	81,000
1600	1250	2	60×10	2.62×10^{10}	162,000
2250	1850	3	60×10	5.90×10^{10}	243,000
1150	950	1	80×10	1.17×10^{10}	108,000
1700	1500	2	80×10	4.67×10^{10}	216,000
2500	2000	3	80×10	1.05×10^{11}	324,000
1350	1150	1	100×10	1.82×10^{10}	135,000
2000	1650	2	100×10	7.29×10^{10}	270,000
2900	2400	3	100×10	1.64×10^{11}	405,000
1650	1450	1	120×10	2.62×10^{10}	162,000
2500	2000	2	120×10	1.05×10^{11}	324,000
3500	3000	3	120×10	2.63×10^{11}	486,000

3 flexible copper bars

Flexible copper bars					
le (A) IP $\leqslant 30$	Ithe (A) IP > 30	Cat. No.	Dim. (mm)	$1^{2}+\left(A^{2} s\right)$	$\mathrm{Icw}_{15}(\mathrm{~A})$
200	160	37410	13×3	2×10^{7}	4485
320	200	37416	20×4	8.5×10^{7}	9200
400	250	$\begin{aligned} & 37411 \\ & 37467 \end{aligned}$	$\begin{aligned} & 24 \times 4 \\ & 20 \times 5 \end{aligned}$	1.2×10^{8}	11,000
470	320	37417	24×5	1.9×10^{8}	13,800
630	400	37412	32×5	3.4×10^{8}	18,400
700	500	37444	40×5	5.3×10^{8}	23,000
850	630	37457	50×5	8.3×10^{8}	28,700
1250	1000	37458	50×10	3.3×10^{9}	57,500
2500	2000	2×37458	$2 \times(50 \times 10)$	1.3×10^{10}	115,000

Sizing busbars

(continued)

CHECKING THE PERMISSIBLE THERMAL STRESS

The thermal stress permitted by the bars must be greater than that limited by the protection device.

Calculating the thermal stress

The maximum thermal stress value $I^{2} t$ taken into consideration for a short-circuit current of less than 5 s is calculated using the formula $\mathrm{I}^{2 \mathrm{t}}=\mathrm{K}^{2} \mathrm{~S}^{2}$, where: $-\mathrm{K}=115 \mathrm{As} \mathrm{s}^{0.5} / \mathrm{mm}^{2}$ for flexible copper bars (max. temperature: $160^{\circ} \mathrm{C}$)
$-K=135 \mathrm{As}^{0.5} / \mathrm{mm}^{2}$ for large cross-section rigid copper bars (width greater than 50 mm ; max. temperature: $200^{\circ} \mathrm{C}$)
$-K=143 \mathrm{As}^{0.5} / \mathrm{mm}^{2}$ for small cross-section rigid copper bars (width less than 50 mm) and C -section bars (max. temperature: $220^{\circ} \mathrm{C}$)
$\mathrm{K}=91 \mathrm{As}^{0.5} / \mathrm{mm}^{2}$ for rigid aluminium bars
(max. temperature: $200^{\circ} \mathrm{C}$)
$\mathbf{S}=$ bar cross-section in mm^{2}
The conventional value of the short-time withstand current with regard to thermal stress, in relation to a period of 1 s , is expressed by the formula: $\mathrm{Icw}_{1 \mathrm{~s}}=\sqrt{\mathbf{1}^{12}}$

Example: using a $12 \times 4 \mathrm{~mm}$ rigid flat bar for 160 A permissible I^{2} t of the bar: $4.7 \times 10^{7} \mathrm{~A}^{2} \mathrm{~s}$
Prospective rms lk: $10 \mathrm{kA}\left(10^{4} \mathrm{~A}\right)$
The thermal stress limited by this device can then be read by plotting the above value on the limitation curve given for the protection device value less than the I^{2} t permitted by the bar.

DETERMINING THE DISTANCES BETWEEN SUPPORTS

The distance between the supports is determined according to the electrodynamic stress generated by he short circuit.
The forces exerted between the bars during a short circuit are proportional to the peak value of the shortcircuit current.

1 RMS VALUE OF THE PROSPECTIVE

 SHORT-CIRCUIT CURRENT (Ik)his is the prospective maximum value of the curren which would circulate during a short circuit if there were no protection device. It depends on the type and power of the source. The actual short-circuit curren will generally be lower in view of the impedance of busbar system. The calculation of the values to be taken into account is described in Book 4: "Sizing conductors and selecting protection devices"

Prospective Ik
This is the rms value of the short-circuit current that would circulate if there were no protection device Ik1: between phase and neutra
Ik2: between 2 phases
Ik 3 : between 3 phas
, Do not confuse Ik with Ipk , which is defined below.

If in doubt or the actual prospective Ik value is not known, use a value of at least $20 \times \ln$.

2 peak current value (Ipk)

The limited peak current is determined from the characteristics of the protection device (see Book 5: Breaking and protection devices").
t represents the maximum (peak) value limited by his device. If there is no limiting protection device, the prospective peak value can be calculated from the prospective short-circuit current and an asymmetry coefficient (see next page).

Sizing busbars

(continued)

Limiting protection device

The limitation curves of the protection devices (DX and DPX) give the limited peak current according to the prospective short-circuit current (see Book 5 "Breaking and protection devices").
The non-limited peak lk curve corresponds to no protection.

The table below gives the limited peak value llpk directly for the maximum prospective short-circuit value equal to the breaking capacity (Icu) of the device. For lower prospective short-circuit values, re
the curves will provide an optimised value.

Device	Rating $($ A)	Ipk (peak) max. $(\mathrm{kA}$)
DPX 125	$16-25$	11.9
DPX 125	$40-63$	15
DPX 125	$100-125$	17
DPX 160	25	14.3
DPX 160	40 to 160	20
DPX 250 ER	100 to 250	22
DPX 250	40 to 250	27
DPX-H 250	40 to 250	34
DPX 630	250 to 630	34
DPX-H 630	250 to 630	42
DPX 1600	630 to 1600	85
DPX-H 1600	630 to 1600	110

Non-limiting protection device

When the busbar is protected by a non-limiting protection device (for example $D X^{3}$), the maximum value of the peak current is developed during the first half-period of the short circuit. This is referred to as the asymmetric $1^{\text {st }}$ peak.

The relationship between the peak value and the rms value of the prospective short-circuit current is defined by the coefficient of asymmetry n :
lpk (peak) $=\mathbf{n} \times$ prospective rms lk

Prospective rms Ik (kA)	n
$\mathbb{I k} \leqslant 5$	1.5
$5<\mathrm{I} \leqslant 10$	1.7
$10<\operatorname{lk} \leqslant 20$	2
$20<\operatorname{lk} \leqslant 50$	2.1
$50<\operatorname{lk}$	2.2

The electrodynamic forces that are exerted between conductors, in particular in busbars, are the result of the interaction of the magnetic fields produced by the current flowing through them. These forces are proportional to the square of the peak current intensity that can be recorded in \hat{A} or $k \hat{A}$. When there is a short circuit, these forces can become considerable (several hundred daN) and cause deformation of the bars or breaking of the supports. The calculation of the forces, prior to the tests, is the result of applying Laplace's law, which states that when in matio field H with induction B, a m of this conductor is subjected to a force $d F=i d \wedge \wedge$.
If the magnetic field originates from another conductor through which i_{2} passes, there is then an interaction of each of the fields \vec{H}_{1} and \vec{H}_{2} and forces \vec{F}_{1} and \vec{F}_{2} generate by \vec{B}_{1} and $\overrightarrow{\mathrm{B}_{2}}$.

The directions of the vectors are give by Ampère's law.
If currents i_{1} and i_{2} circulate in the same direction, they attract, if they circulate in opposite directions, they repel.

${ }^{\wedge}$ Schematic representation at a poin in space (Biot-Savart law)

0

General formula for calculating the forces in the event of a short circuit

The calculation of the forces in the event of short circuits (Fmax), can be defined as follows:

$F_{\max }=2 \times I^{2} \times \frac{D}{E} \times 10^{-8}$ with F in daN, I in A peak, and D and E in the same unit.
n practice, this formula is only applicable to very long ($D>20 \mathrm{E}$) round conductors. When D is shorter, a correction, called the "end factor" is applied

- For $4 \leqslant \frac{D}{E}<20$, use $F_{\max }=2 \times 1^{2} \times\left(\frac{D}{E}-1\right) \times 10^{-8}$

For $\frac{D}{E}<4$, use $F_{\text {max }}=2 \times 1^{2} \times\left[\sqrt{\left(\frac{D}{E}\right)^{2}+1}-1\right] \times 10^{-8}$
Correction factors must be inserted in these formulae to take account of the layout and shape of the conductors when they are not round.

Sizing busbars

(continued)

3 PRACTICAL DETERMINATION OF THE dISTANCES between the supports ACCORDING TO THE PEAK CURRENT (lipk)

Maximum distance D (in mm) between multipole supports Cat. Nos. 373 96. 374 10/15/32/36 (E fixed)												
Supports						37415						
		37396			$\begin{array}{\|c\|} 37436 \\ 37438 \\ (25 \times 4) \end{array}$							
Bars		$\begin{gathered} 37388 \\ (12 \times 2) \end{gathered}$	$\begin{gathered} 37389 \\ (12 \times 4) \end{gathered}$			$\begin{gathered} 37434 \\ (18 \times 4) \end{gathered}$	$\begin{gathered} 37418 \\ (25 \times 5) \end{gathered}$	$\begin{gathered} 37419 \\ (32 \times 5) \end{gathered}$	$\begin{array}{r} 37434 \\ (18 \times 4) \end{array}$	$\begin{aligned} & 37438 \\ & (25 \times 4) \end{aligned}$	$\begin{aligned} & 37418 \\ & (25 \times 5) \end{aligned}$	$\begin{gathered} 37419 \\ (32 \times 5) \end{gathered}$
Ipk (peak)	10	200	400	550	650	1000	1200	1500	550	650	800	900
(in KÂ)	15	150	300	400	500	700	1000	1200	400	600	700	800
	20	125	200	300	400	550	750	950	300	450	550	700
	25	100	150	200	350	400	600	750	250	350	400	500
	30			150	200	350	500	650	200	300	350	400
	35			100	150	300	400	550	150	250	300	350
	40				100	250	350	450	150	200	300	300
	45									150	200	200
	50					200	300	400		150	175	100
	55									100	150	100
	60					200	250	300			150	
	70					150	200	250				
	80					150	200	250				

Maximum distance D (in mm) between multipole supports Cat. Nos. $37320 / 21$ (E fixed: 75 mm)

Support												
$\begin{gathered} \text { Bars } \\ 50 \mathrm{~mm} \text { thick } \end{gathered}$		1 flat bar per pole				1 C -section bar per pole			1 flat bar per pole			
		$\begin{gathered} 37418 \\ (25 \times 5) \end{gathered}$	$\begin{aligned} & 374 \\ & (32 \times 5) \end{aligned}$	$\begin{aligned} & 37440 \\ & (50 \times 5) \end{aligned}$	$\begin{gathered} 37444 \\ (63 \times 5) \end{gathered}$	155 mm ${ }^{2}$	$265 \mathrm{~mm}^{2}$	$440 \mathrm{~mm}^{2}$	$\begin{gathered} 37440 \\ (50 \times 5) \end{gathered}$	$\begin{gathered} 37441 \\ (63 \times 5) \end{gathered}$	$\begin{array}{r} 37459 \\ (75 \times 5) \end{array}$	$\begin{gathered} 37443 \\ (80 \times 5) \end{gathered}$
Ipk (peak) (in $k \hat{A})$	10	800	900			1100	1600	1600	1000	1200	1200	1200
	15	600	600	700	800	800	1000	1300	800	900	1000	1000
	20	450	500	600	700	600	800	1000	650	700	750	750
	25	350	400	500	550	450	650	800	500	600	600	600
	30	300	350	400	450	400	550	700	400	500	550	550
	35	250	300	350	400	350	450	600	350	450	450	450
	40	200	250	275	300	300	400	550	300	350	400	400
	45	200	200	225	250	250	350	500	300	300	350	350
	50	150	150	200	200	250	300	450	250	250	300	300
	60	125	125	150	150	200	300	400	200	250	250	250
	70	100	100	150	150	150	250	350	150	200	200	200
	80			100	100		200	300	100	150	200	200
	90						200	250	100	150	200	200
	100						150	250	100	150	150	150
	110						150	200	100	100	150	150
	120						150	200	100	100	100	100

Maximum distance D (in mm) for multipole supports Cat. Nos. 37322123 (E fixed: 75 mm)

Supports	373 22/23 and 37453									
	1 flat bar per pole					2 flat bars per pole				
Bars 50 mm thick	$\begin{array}{r} 37440 \\ 150 \times 51 \end{array}$	$\begin{gathered} 3741 \\ (63 \times 5) \end{gathered}$	37459 (75 x 5)	$\begin{gathered} 37443 \\ 180 \times 51 \end{gathered}$	37446 1100×5	$\begin{gathered} 37440 \\ (50 \times 5) \end{gathered}$	$\begin{gathered} 37441 \\ 163 \times 51 \end{gathered}$	$\begin{gathered} 37459 \\ 175 \times 51 \end{gathered}$	$\begin{array}{r} 37443 \\ 180 \times 51 \end{array}$	$\begin{array}{r} 37446 \\ (170 \times 55 \end{array}$
10	1000	1200	1200	1200	1200					
Ipk (peak) 15	800	900	1000	1000	1200					
(in kA) 20	650	700	750	750	900					
25	500	600	600	600	700					
30	400	500	550	550	600	700	800			
35	350	450	450	450	550					
40	300	350	400	400	450	550	600	650	650	700
45	300	300	350	350	400					
50	250	250	300	300	350	450	500	500	500	550
60	200	250	250	250	300	350	400	400	400	450
70	150	200	250	250	250	250	350	350	350	400
80	100	150	200	200	200	250	300	300	300	300
90	100	150	200	200	200	200	250	300	300	300
100	100	150	150	150	150	200	200	250	250	250
110	100	100	150	150	150	200	150	200	200	200
120	100	100	100	100	100	150	150	200	200	200

Sizing busbars

(continued)

Maximum distance D (in mm) between multipole supports Cat. Nos. 373 24/25 with 5 mm thick bars																					
Supports		373 24, 373 25, 37454																			
Bars		1 bar per pole					50×5	2 bars per pole				3 bars per pole					550×5	4 bars per pole			
		50×5	63×5	$\begin{aligned} & 75 \times 5 \\ & 8055 \end{aligned}$		125×5		63×5	$\begin{aligned} & 75 \times 5 \\ & 80 \times 5 \end{aligned}$	100×5	125×5	50×5	63×5	$\begin{aligned} & 75 \times 5 \\ & 80 \times 5 \end{aligned}$	100×5	125×5		63×5	$\begin{aligned} & 75 \times 5 \\ & 80 \times 5 \end{aligned}$		25×5
Ipk (peak)	10	1550	1700	1700	1700	1700	1700	1700	1700	1700	1700										
(in kÂ)	15	1050	1200	1350	1550	1700	1550	1700	1700	1700	1700	1700									
	20	800	900	1000	1150	1350	1200	1350	1500	1700	1700	1550	1700	1700	1700	1700	1700	1700	1700	1700	1700
	25	650	750	800	950	1100	950	1100	1200	1400	1550	1250	1450	1600	1700	1700	1550	1700	1700	1700	1700
	30	550	600	700	800	900	800	900	1000	1150	1300	1050	1200	1350	1550	1700	1300	1500	1700	1700	1700
	35	450	550	600	650	800	700	800	900	1000	1150	900	1050	1150	1300	1500	1150	1250	1450	1650	1700
	40	400	450	550	600	700	600	700	800	900	1000	800	900	1050	1150	1300	1000	1100	1300	1450	1650
	45	350	400	450	550	600	550	600	700	800	900	700	800	900	1050	1200	900	1000	1150	1300	1450
	50	350	350	450	500	550	500	550	650	700	800	650	750	850	950	1050	800	900	1050	1150	1350
	60	300	300	350	400	450	400	450	550	600	700	550	600	700	800	900	650	750	850	1000	1100
	70	250	250	300	350	400	350	400	450	500	650	450	550	600	700	750	600	650	750	85	950
	80		250	250	300	350	300	350	400	450	550	400	450	550	600	700	500	600	650	750	850
	90			250	250	300	300	300	350	400	500	350	400	500	550	600	450	500	600	650	750
	100				250	300	250	300	300	350	500	350	400	450	500	550	400	450	550	600	700
	110				250	250	250	250	300	350	450	300	350	400	450	500	350	450	500	550	600
	120					250		250	250	300	450	300	300	350	400	450	350	400	450	550	550
	130					250			250	300	400	250	300	350	350	450	300	350	400	500	550
	140								250	250	400	250	250	300	350	400	300	350	400	450	500
	150									250	350	250	250	300	350	350	300	300	350	400	450
	160									250	350		250	250	300	350	250	300	350	400	350
	170										350		250	250	300	350	250	300	300	350	300
	180										300			250	300	300	250	250	300	350	300
	190													250	250	300	250	250	300	300	250
	200														250	300		250	250	300	250
	210														250	250		250	250	250	200
	220														250	250			250	250	200

```
The distances take the most severe short-circuit conditions into account:
- Ik \(\mathbf{k}_{2}\) two-phase short-circuit value resulting
in non-uniform forces
in maximum force ont-circuit value resulting
- Ik \(\mathbf{k}_{1}\) value (phase/neutral) is generally the weakes
```

Maximum distance (in mm) between multipole supports Cat. Nos. 373 24/25 with 10 mm thick bars									
Supports	37324,37325 and 37454 5								
				2 bars per pole			3 bars per pole		
$\text { Ipk (peak) } 20$	1700	1700	1700	${ }_{1700}$	1700	1700	80×10 1700	1700	1700
(in kA) 25	1600	1700	1700	1700	1700	1700	1700	1700	1700
30	1350	1550	1700	1700	1700	1700	1700	1700	1700
35	1150	1300	1450	1700	1700	1700	1700	1700	1700
40	1050	1150	1300	1500	1700	1700	1700	1700	1700
45	900	1050	1150	1350	1550	1700	1700	1700	1700
50	850	950	1050	1200	1400	1550	1600	1700	1700
60	700	800	850	1000	1150	1300	1350	1550	1700
70	600	700	750	900	1000	1100	1150	1300	1500
80	550	600	650	750	900	1000	1000	1150	1300
90	500	550	600	700	800	900	900	1050	1100
100	450	500	550	600	700	800	850	900	950
110	400	450	500	550	650	750	750	800	800
120	350	400	450	550	600	650	700	750	750
130	350	350	400	500	550	600	650	700	700
140	300	350	400	450	500	600	600	650	650
150	300	350	350	450	500	550	550	650	600
160	250	300	350	400	450	500	550	600	500
170	250	300	300	350	450	500	500	500	500
180	250	300	300	350	400	450	500	450	450
190	250	250	300	350	400	450	450	400	400
200	200	250	300	300	350	400	450	400	400
210	200	250	250	300	350	350	400	350	350
220		250	250	300	350	300	350	300	300
230		200	250	300	300	300	300	300	300
240			200	250	300	250	300	250	250
250			200	250	300	250	250	250	250

Sizing busbars

(continued)

Maximum distance D (in mm) between multipole supports Cat. Nos. $37366 / 67$ and $37368 / 69$

Supports											
Bar		1 C -section aluminium bar per pole					1 C -section aluminium bar per pole				
		37354	37355	37356	37357	37358	37354	37355	37356	37357	37358
$\begin{aligned} & \text { Ipk (in } \\ & \text { kÂ) } \end{aligned}$	30	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600
	40	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
	52	800	800	800	800	800	800	800	800	800	800
	63	700	700	700	700	700	600	600	600	600	600
	73	600	600	600	600	600	500	500	500	500	500
	80	600	600	600	600	600	500	500	500	500	500
	94	500	500	500	500	500	400	400	400	400	400
	105	500	500	500	500	500	400	400	400	400	400
	132	-	-	500	500	500	-	-	400	400	400
	154	-	-	400	400	400	-	-	300	300	300

<ables are connected
to C-section aluminium
bars without drilling, using
hammer head screws

MAGNETIC EFFECTS ASSOCIATED WITH BUSBARS

The magnetic effects can be divided into transient effects, which are the short-circuit electrodynamic forces, and permanent effects created by induction due to circulation of high currents. The effects of induction have several consequences

- Increased impedance in the conductors due to the effects of mutual inductance

- Temperature rise linked to magnetic saturation of the mate rials in the fiel
the conductors
- Possible interference in sensitive devices for which it is recommended that minimum cohabitation distances are observed (see Book 8)

A knowledge of the induction phenomena generated by the powe conductors enables appropriate mounting and cohabitation conditions to be stipulated.

Measuring the magnetic field lines around a busbar

The testa (T) represents the magnetic induction value, which, directed perpendicular to a $1 \mathrm{~m}^{2}$ surface, produces a flux of 1 weber across this surface. As the tesla expresses a very high value, its sub-units are generally used he millitesla (mT) and the not be used ($1 \mathrm{~T}=10,000 \mathrm{G}$).
per metre", indicates the intensity of thi unit, formerly called the "ampere-turn . 1 A current.
he induction B (in T) and the field H (in A / m) are linked by the formula $B=\mu_{0} \mu_{\mathrm{r}} \mathrm{H}$ where:
$\mu_{0}=4 \pi 10^{-7}$ (magnetic permeability of air or the vacuum)
$\mu_{\mathrm{r}}=1$ (relative permeability of iron)
mes read close to a busbar at 4000 A :
$.1 \mathrm{mT}(125 \mathrm{~A} / \mathrm{m})$ at a distance of 1 m (sensitive equipment) $0.5 \mathrm{mT}(625 \mathrm{~A} / \mathrm{m})$ at a distance of 50 cm (limited sensitivity equipment) $1 \mathrm{mT}(1250 \mathrm{~A} / \mathrm{m})$ at a distance of 30 cm (very low sensitivity equipment)

The formation of magnetic fields around high power busbars MUST be prevented.
The structures of XL^{3} enclosures, which incorporate non-magnetic elements (which create air gaps), are ideal for the highest currents.

^ The corner pieces of $\mathrm{XL}^{3} 4000$ enclosures are made of non-magnetic alloy

The specified separation distances between conductors and devices will be increased in the event of cohabitation with very high powe If there are no instructions from the manufacturers, the increased to:
-30 cm for devices with very low sensitivity (fuses, non residual current devices, connections, MCCBs, etc.
Isecondary circuit breakers, including RCD (secondary circuit breakers, including RC
relays, contactors, transformers, etc.) relays, contactors, transformers, etc.) digital measuring devices, bus-based systems remote controls, electronic switches, etc.) - Devices which are very sensitive to magnetic fields lanalogue gauge, meters, oscillographs, cathode ray tubes, etc.) may require greater separation distances.

Sizing busbars

(continued)

The circulation of high currents in busbars leads to the induction of magnetic fields in the surrounding exposed metal conductive parts
lenclosure panels
frames and chassis, etc.).
The phenomenon is simila
The phenomenon is similar to that used for creating electhis case it must be limited to avoid temperature rises in thes avoid temperature rises in thes the circulation of induced the circula

Minimum distances between bars and metal panels

In practice the values of the magnetic field generated by the power bars considerably xceed the standard values for exposure of the devices.
Much more severe tests, such as those o undergone by Lexic range devices, perate correctly in these conditions.
 the formation of magnetic fields.

${ }^{\wedge}$ Non-magnetic stainless steel screws perform Non-magnetic stainess steel screws perform

In addition to the heat dissipation aspects which require the provision of adequately sized dissipation volumes, it is essential to take these notions of magnetic induction in the xposed conductive parts of the enclosures into consideration by ensuring they are large nough to maintain the appropriate distances between bars and walls.
Above 2500 A, this can lead to providing enclosures (for example, at the rear) just to
take the busbars.

CHECKING THE INSULATION CHARACTERISTICS

1 insulation voltage ui

This must be the same as or higher than the maximum value of the rated operating voltage for the assembly, r the reference voltage. The latter depends on the mains supply voltage and the structure of the source (star, delta, with or without neutral).

Reference voltage values (in V) to be taken into consideration according to the nominal supply voltage			
	For insulation between phases	For insulation between phase and neutral	
Nominal power supply voltage	All supplies	4-wire three phase supplies neutral connected to earth	3-wire three phase supplies not connected to earth or one phase connected to earth
60	63	32	63
110-120-127	125	80	125
160	160	-	160
208	200	125	200
220-230-240	250	160	250
300	320	-	320
380-400-415	400	250	400
440	500	250	500
480-500	500	320	500
575	630	400	680
600	630	-	630
660-690	630	400	630
720-830	800	500	800
960	1000	630	1000
1000	000	-	1000

A check must be carried out to ensure that the reference voltage is not higher than the insulation voltage $U i$ of the devices, busbars and distribution blocks.

Sizing busbars

(continued)

2 impulse withstand voltage Uimp

This value characterises the permissible overvoltage level in the form of a voltage wave representative of a lightning strike.
Its value (in kV) depends on the mains voltage, and also the location in the installation
It is highest at the origin of the installation lupstream of the incoming MCB or the transformer)
Equipment can be designated or marked according to wo methods

- Two values indicated (example: $230 / 400 \mathrm{~V}$): these refer to a 4-wire three-phase supply (star configuration). The lower value is the voltage between phase and neutral, and the higher is the value between phases.
- A single value indicated (example: 400 V): this normally refers to a 3 -wire single phase or three phase supply with no earth connection (or with one phase connected to earth) and for which the phaseearth voltage must be considered capable of reaching the value of the phase-to-phase voltage full voltage between phases).

All the specifications relating to insulatio are defined by international standard EC 60664-1 "Insulation coordination lew systems (networks) EC 60439-1 and IEC 60947-1.

Legrand busbar supports are designed and tested for the harshest operating condition risks. The Uimp value characterises this safe requirement.

Insulation characteristics of busbar supports (Degree of pollution: 3), similar to industrial applications			
Cat. No.	$\begin{aligned} & 37398 \\ & 37437 \end{aligned}$	373 15/96	373 10/20/21/22/23/24/25
Ui (v)	500	690	1000
Uimp (kV)	8	8	12

Insulation characteristics of busbar
supports (Deqree of pollution: 3), simila to industrial applications

The insulation voltage Ui of supports and distribution blocks is determine by measuring the creepage distances, by the insulating properties of the material and by the degree of pollution.
-The creepage distance is the distance measured on the surface of the insulation in the most unfavourable conditions or positions between the live parts (phases, phases and neutral) and between these parts and the exposed conductive part
-The insulating properties of the material are characterised amongst other things by the comparative tracking index (CTI). The higher this value, the less the insulation will be damaged by conductive pollution deposits (Legrand busbar supports, made of fibreglass reinforced polyamide 6.6, have an index of more than 400).

- The degree of pollution characterises the risk of conductive pollution deposits, using a number from 1 to 4
-1 : No pollution
- 2 : No pollution and temporary condensation
- 3 : Conductive pollution possible
: Persistent pollution

General principle of measuring he clearances and creepage distances

Level 2 is similar to household, commercial and residential applications Level 3 is similar to industrial applications

Shaping and connecting bars

Creating busbars generally involves machining, bending and shaping which require a high degree of expertise to avoid weakening the bars or creating stray stresses. The same applies to connections between bars, whose quality depends on the sizes and conditions of the contact areas, and the pressure of this contact (number of screws and effectiveness of tightening).

RIGID BARS

1 SIZES OF THE CONTACT AREAS

The contact area (Sc)
must be at least 5 times the crosssection of the bar (Sb). $\mathrm{Sc}>5 \times \mathrm{Sb}$ For main busbar continuity links, it is advisable to establish contacts along the entire length of the bar in order to ensure optimum heat transfer.

For branch busbars, the contact area can be smaller, complying with the condition $\mathrm{Sc}>5 \times \mathrm{Sb}$.
For equipment connection plates, contact must be made over the whole surface of the plate for use at nominal current.

2 contact pressure

The contact pressure between bars is provided using screws whose size, quality, number and tightening torque are selected according to the current and the sizes of the bars.
Too high a tightening torque or not enough screws can lead to distortions which reduce the contact area It is therefore advisable to distribute the pressure by increasing the number of tightening points and using wide washers or back-plates.

Applying a mark (paint, brittle coating) will show any loosening and can also be used to check that tightening has been carried out correctly (tell-tale)

$1(A)$		Bar width (mm)	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { screws } \end{gathered}$	$\begin{aligned} & \emptyset \text { Screw } \\ & (\mathrm{mm}) \end{aligned}$	Minimum quantity	Tightenin torque (Nm)
1 bar	2+ bars					
$\leqslant 250$	-	$\leqslant 25$	$\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { M8 } \\ & \text { M6 } \end{aligned}$	$\begin{aligned} & 8-8 \\ & 8-8 \end{aligned}$	$\begin{aligned} & 15 / 20 \\ & 10 / 15 \end{aligned}$
$\leqslant 400$	-	$\leqslant 32$	1	M10	6-8	30/35
$\leqslant 630$	-	$\leqslant 50$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { M12 } \\ & \text { M10 } \\ & \text { M8 } \end{aligned}$	$\begin{aligned} & 6-8 \\ & 6-8 \\ & 8-8 \end{aligned}$	$\begin{aligned} & 50 / 60 \\ & 30 / 35 \\ & 15 / 20 \\ & \hline \end{aligned}$
800	1250	$\leqslant 80$	4	$\begin{aligned} & \text { M8 } \\ & \text { M10 } \end{aligned}$	$\begin{aligned} & 8-8 \\ & 6-8 \end{aligned}$	$\begin{array}{r} 15 / 20 \\ 30 / 35 \\ \hline \end{array}$
1000	1600	$\leqslant 100$	4	$\begin{aligned} & \text { M10 } \\ & \text { M12 } \\ & \hline \end{aligned}$	$\begin{aligned} & 6-8 \\ & 6-8 \end{aligned}$	30/35 50/60
1600	2500	$\leqslant 125$	4	M12	6-8	50/60

Tightening torques that are too high lead to the limit of elasticity of the bolts being exceeded and creeping of the copper.

Shaping and connecting bars (continued)

3 condition of the contact areas

Apart from pronounced oxidation Isignificant blackening or presence of copper carbonate or verdigris"), bars do not equire any special preparation. Cleaning with bited, as, apart from the bited, as, apart from the
risks, it requires neutralisation and rinsing. Surface sanding (240/400 grain) can be carried out, complying with the direction of sanding so that the "scratches" on bars that are in contact are perpendicular

4 MACHINING COPPER BARS

Copper is a soft, "greasy" or "sticky" metal in terms used in the trade. Shaping is generally carried out dry but lubrication is necessary for high-speed cutting or drilling operations (up to $50 \mathrm{~m} / \mathrm{mn}$)

${ }^{\wedge}$ Sawing (8 D medium tooth) in a clamping vice

^ The hydraulic punch is used to make precision holes easily and with no chips

5 bending bars

t is strongly recommended that a full-scale drawing is made of the bars, in particular for bends and stacking of bars.

The bars are separated by their thickness "e" The total centre line length before bending is the sum of the straight parts ($\mathrm{L} 1+\mathrm{L} 2$) that are not subject to any distortion and the length ℓ of the curved elements any distortion and le lengtry of the curved ele thickness of the metall.

Shaping and connecting bars (continued)

FLEXIBLE BARS

Flexible bars can be used for making connections on devices or for creating links that can be adapted to virually any requirement. Guaranteeing safety and high quality finish, they provide an undeniably attractive ouch.
Based on the most commonly used sizes and the electrical capacities of the usual nominal values, the Legrand range of flexible bars is suitable for most connection or linking requirements.
As with any conductor, the current-carrying capacities of flexible bars may vary according to the conditions
of use:

- Ambient temperature lactual in enclosure)
- Period of use (continuous or cyclic load), or installation conditions
- Bars on their own or grouped together Iside by side in contact or with spacers)
- Ventilation: natural (IP $\leqslant 30$), forced (fan) or none (IP > 30)
- Vertical or horizontal routing.

The considerable variability of all these conditions leads to very different current-carrying capacities lin a ratio of 1 to 2 , or even more).

Incorrect use can result in temperature rises that are incompatible with the insulation, disturbance or even damage to connected or surrounding equipment Flexible bars are shaped manually without the need for any special tools, although some dexterity is required to achieve a perfect finish.

The currents le (A) and Ithe (A) of Legrand flexible bars are given for the following conditions:
le (IIP \$ 30): maximum permanent curenclosures, the positions of the bars and relative distance between them allow correc cooling.
The temperature in the enclosure must be similar to the ambient temperature. Ithe (IP > 30): maximum permanent current arrying capacity in sealed enclosures. se to one anothe but must not be in contact.
The temperature in the enclosure can reach $50^{\circ} \mathrm{C}$.
$50^{\circ} \mathrm{C}$.

Connection of a DP to a distribution block using flexible bars

Flexible bars have higher current-carryin capacities than cables or rigid bars with th same cross-section due to their lamellar structure (limitation of eddy currents), their shape (better heat dissipation) and their permissible temperature $\left(105^{\circ} \mathrm{C}\right.$ high emperature PVC insulation).

CURRENT TRANSFORMERS (CT)

Measuring devices such as ammeters, electricity meters and multifunction control units are connected via current transformer which provide a current of between and 5 A. The transformation ratio will be chosen according to the waximuse currento be measur maximum current to be measured These transformers can be fixed directly on flat, flexible or rigid bars

Fixing CTs on busbars

Cat. No.	$\begin{array}{\|l\|} \text { Transformation } \\ \text { ratio } \end{array}$	$\begin{gathered} \text { Dimensions } \\ (\mathrm{mm}) \end{gathered}$	Aperture for cables \emptyset max. (mm)	$\begin{gathered} \text { Apeture } \\ \text { for bar } \\ \text { with x thick. } \\ (\mathrm{mm}) \end{gathered}$	Fixing on rail	$\begin{array}{\|c} \text { Fixing on } \\ \text { plate } \end{array}$	Direct fixing on cables or hars
Single phase CTs							
04631 04634 04636	$\begin{gathered} 50 / 5 \\ 100 / 5 \\ 200 / 5 \end{gathered}$		21	16×12.5	\bullet	\bullet	
04775	300/5		23	$\begin{aligned} & 20.5 \times 12.5 \\ & 25.5 \times 11.5 \\ & 30.5 \times 10.5 \end{aligned}$	\bullet	\bullet	\bullet
04638	400/5		35	40.5×10.5	\bullet		\bullet
$\begin{aligned} & 04776 \\ & 04777 \\ & 04778 \end{aligned}$	$\begin{aligned} & 600 / 5 \\ & 800 / 5 \\ & 1000 / 5 \end{aligned}$			32×65			\bullet
04779	1250/5			34×84			\bullet
04645 04646	$\begin{aligned} & 1500 / 5 \\ & 2000 / 5 \end{aligned}$			38×127			-
04780 04648	$\begin{aligned} & 2500 / 5 \\ & 4000 / 5 \end{aligned}$			54×127			-
Three-phase CTs							
04698	250/5		8	20.5×5.5			\bullet
04699	400/5			30.5×5.5			\bullet

Distribution blocks

The distribution block is a prefabricated device. It is therefore sized to suit its rated current and, unlike busbars, does not require manufacturing definitions. However, the diversity of distribution blocks according to their capacity, their connection mode and their installation calls for careful selection while adhering to precise standards.

Possible locations for distribution blocks

Location
At panel supply end or output for connecting incoming or outgoing conductors

CHARACTERISTICS OF DISTRIBUTION BLOCKS

Before making the final choice of product a few essential characteristics must be checked. These are given for all Legrand distribution blocks.

1 rated current

ften called nominal current (In), this should be chosen according to the current of the upstream device or the cross-section of the power supply conductor.
As a general rule, use a distribution block with the same current as or immediately above that of the main device $\left(l_{t}\right)$, ensuring that the sum of the currents of the distributed circuits is not higher than the nominal current (In) of the distribution block.

In $\geqslant I_{t}$ or $\ln \geqslant I_{1}+I_{2}+I_{3}+I_{4}$

In practice, it is possible to select one or more distribution blocks with a lower nominal current if the downstream circuits are not on-load simultaneously (bulking factor) or are not 100\% on-load (diversity coefficient) (see Book 2).

Distribution blocks

(continued)

2 PERMISSIBLE SHORT-CIRCUIT VALUE

- Value Icw characterises the conventional currentcarrying capacity for 1 s from the point of view of thermal stress.
- Value Ipk characterises the maximum peak current permitted by the distribution block. This value must be higher than that limited by the upstream protec tion device for the prospective short circuit.

3 insulation value

- The insulation voltage Ui must be at least equal to the maximum value of the rated operating voltage of the assembly, or the reference voltage (see p. 23).

The impulse withstand voltage Uimp characterises the permissible overvoltage level when there is a lightning strike (see p. 24).

Legrand distribution blocks are designed
to resist thermal stress at least as high as to resist thermal stress at least as high as that of the conductor with the cross-section corresponding to the nominal current, which necessary.
They are tested for the harshest operating conditions corresponding to the highest overvoltage risks.
The Uimp value characterises this safety requirement.

It is not generally necessary to check the Ipk when the distribution block is protected by a device with the same nominal current. However it must be checked if the rating of the upstream device is higher than the current of the distribution block.

Concern for maximum safety
Legrand distribution blocks are designed to minimise the risks of short circuits between poles: individual insulation of the bars on modular distribution blocks, partitioning of power distribution blocks, new totally isolated concept of single pole distribution blocks Cat. Nos. $04871 / 73 / 83$, all innovations to increase safety. Providing the highest level of fire resistance $1960^{\circ} \mathrm{C}$ incandescent wire in accordance with standard IEC 60695-2-1), Legrand distribution blocks meet the standard requirement for non-proximity of combustible materials.

4 CONNECTION METHOD

4.1. Direct connection

The conductors are connected directly in the erminals without any special preparation. This is the preferred on-site method for H07 V-U, H07 V-R rigid conductors and FR-N05 VV-U and H07 V-R rigid conductors and FR-N05 VV-U and
FR-N05 VV-R cables. Use of a ferrule Isuch as FR-N05 V -R cables. Use of a ferrule (such as
Starfix ${ }^{T M}$) is recommended for flexible conductors (H07 V-K) connected in butt terminals lunder the body of the screwl and for external flexible cables H07 RN-F, A05 RR-F, etc.) which may be subject to pulling.

4.2. Connection via terminals

This type of connection is normally used for large cross-section conductors, and mainly for panels that are wired in the factory. It is characterised by xcellent mechanical withstand, excellent electrical

63/100 A terminal blocks, 125/160 A modular distribution blocks and 250 A Lexiclic distri bution blocks can be connected directly. $125 / 250$ A extra-flat distribution blocks an connected via terminals.

Distribution blocks

(continued)

PHASE BALANCING

A well-designed installation should never require rebalancing after it has been built. However, there are always unforeseen circumstances

- The loads may not have been
correctly identified luses on power ockets
- The loads may be irregular, or even random: holiday homes, office blocks, etc.
Three-phase loads connected with motive power, heating air conditioning, furnaces and in general any uses with a direct three-phase supply do not generate any significant unbalance.
However, all household applications (lighting, heating domestic appliances) and office applications appliances) and office applications computers, colfee maches, et epresent single phase loads that

Row of single phase outputs supplied via a DPX 125 (100 A)

Phase 1 supplies: 2 DX 32 A, 2 DX $20 \mathrm{~A}, 1$ DX 10 A Phase 2 supplies: 1 DX 32 A, 2 DX 20 A, 3 DX 10 A Phase 3 supplies: 1 DX 32 A , 3 DX $20 \mathrm{~A}, 1$ DX 10 A

The neutral conductor must be the same cross-section as the phase conductors: - In single phase circuits, regardless of the cross-section, and in polyphase circuits up to a phase conductor cross-section of $16 \mathrm{~mm}^{2}$ for copper ($25 \mathrm{~mm}^{2}$ for aluminium) Above this, its cross-section can be reduced in line with the load, unbalance, short-circuit
 devices")

Breaking of the neutra

> If the neutral breaks (maximum unbalance), the neutral point moves according to the load of each phase. The greater the load on a phase (phase 1 in this diagram), the lower its impedance. V_{1} drops, V_{2} and V_{3} increase and may reach the value of the phase-to-phase voltage on the phases with the lowest loads, which generally supply the most sensitive devices.

Currents and voltages in star configuration three-phase system

In balanced system

$\overrightarrow{\mathrm{V}_{1}}, \overrightarrow{\mathrm{~V}_{2}}, \overrightarrow{\mathrm{~V}_{3}}$: Phase-to-neutral voltages $\xrightarrow{\mathrm{U}_{12}}, \overrightarrow{\mathrm{U}_{23}}, \overrightarrow{\mathrm{U}_{31}}$: Phase-to-phase voltages $\xrightarrow[\rightarrow]{\mathrm{U}_{12}}=\xrightarrow{\mathrm{v}_{1}}-\vec{v}_{2}$
$\overrightarrow{\mathrm{U}_{23}}=\overrightarrow{\mathrm{v}_{2}}-\overrightarrow{\mathrm{v}_{3}}$ $\vec{U}_{31}=\vec{v}_{3}-\vec{v}_{1}$
$\mathrm{U}=\mathrm{V} \times \sqrt{3}$
$1400=230 \times \sqrt{3}$)
$(230=127 \times \sqrt{3})$

In unbalanced system with neutral

$I_{1} \neq I_{2} \neq I_{3}$
$\xrightarrow[\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}=\ln]{\rightarrow}$
$\mathrm{v}_{1}=\mathrm{v}_{2}=\mathrm{v}_{3}=\mathrm{v}$
The phase-to-neutral voltages remain balanced.
The neutral conductor maintains the balance of the phase-to-neutral
voltages V by discharging the current due to the unbalance of the
loads. It also discharges the current resulting from the presence
of harmonics.

In unbalanced system without neutral
$\mathrm{Z}_{1} \neq \mathrm{Z}_{2} \neq \mathrm{Z}_{3}$
$I_{1} \neq I_{2} \neq I_{3}$
$\xrightarrow[\rightarrow]{I_{1}+I_{2}+I_{3}=0}$
$\mathrm{v}_{1} \neq \mathrm{V}_{2} \neq \mathrm{V}_{3}$
The phase-to-neutral voltages V are unbalanced even
though the phase-to-phase voltages U remain equal.

Distribution blocks

(continued)

Distribution blocks

(continued)

LEGRAND DISTRIBUTION BLOCKS

The following installation possibilities and characteristics that have previously been described: rated current, short-circuit resistance, insulationvalues, umber and capacition method, be determined.

Electrical characteristics of distribution blocks

Type	Cat. Nos.	$\ln (\mathrm{A})$	$\mathrm{It}^{2}\left(\mathrm{~A}^{2} 5\right)^{(11)}$	Icw (kA)	Ipk (kÂ)	Ui (v)	Uimp (kV)
Unprotected terminal blocks	048 01/03/05/06/07	63/100	1.210^{7}	3.5	17	400	8
	048 20/22/24/25						
IP 2x terminal blocks screw terminals	048 30/32/34/35/36/38						
	048 15/40/42/44/45/46/48						
	048 16/50/52/54						
one-piece	04881/85	40	0.910^{7}	3	20	500	8
	048 80/84	100	2.010^{7}	4.5	20		
	04882/88	125	2.010^{7}	4.5	18		
	04886	160	1.810^{7}	4.2	14.5		
	04877	250	6.410^{7}	8	27		
can be joined	04871	125	3.610^{7}	6	23		
	04883	160	1.010^{8}	10	27		
	04873	250	3.210^{8}	18	60		
extra-flat Power distribution blocks for lugs stepped	37447	125	1.110^{7}	4.1	25	500	8
	37400	250	3.210^{8}	$8 / 12^{(2)}$	60	1000	12
	37395	125	1.710^{7}	4.1	20	600	-
	37430	125	7.410^{7}	8.5	35	1000	12
	37431	160	1.010^{8}	10	35		
	37435	250	2.110^{8}	14.3	35		
	37308	400	3.410^{8}	17	50/75 $5^{(3)}$		
Aluminium/copper connection boxes	37480	300	2.110^{8}	14.5	>60	-	10
	37481	400	4.910^{8}	22.2	> 60	-	12

[^1] (2) Upper/lower ranges - (3) Spacing between $50 \mathrm{~mm} / 60 \mathrm{~mm}$ bars

Thermal stress permitted by conductors with PVC insulation												
	$\mathrm{S}\left(\mathrm{mm}^{2}\right)$	1.5	2.5	4	6	10	16	25	35	50	70	95
Copper	$I^{2}+\left(A^{2} S\right)$	0.3×10^{5}	0.8×10^{5}	0.2×10^{6}	0.5×10^{6}	1.3×10^{6}	3.4×10^{6}	8.3×10^{6}	1.6×10^{7}	3.3×10^{7}	6.4×10^{7}	1.2×10^{8}
	Icw (kA)	0.17	0.29	0.46	0.69	1.15	1.84	2.9	4	5.7	8	10.9
Alumin.	$\mathrm{I}^{2}+\left(A^{2} \mathrm{~S}\right)$					5.7×10^{5}	1.5×10^{6}	3.6×10^{6}	7×10^{6}	1.4×10^{7}	2.8×10^{7}	5.2×10^{7}
	Icw (kA)					0.76	1.2	1.9	2.7	3.8	5.3	7.2

1 INDEPENDENT DISTRIBUTION TERMINAL BLOCKS

otally universal in their application, this type of terminal block can be used to distribute up to 100 A on between 4 and 33 outputs, depending on the catalogue number. The incoming cross-section is between 4 and $25 \mathrm{~mm}^{2}$, and the outputs between 4 and $16 \mathrm{~mm}^{2}$. They are fixed on 12×2 flat bars or TH $35-15$ and TH 35-7.5 rails.

Independent distribution terminal blocks

NANDNXAKH
 ${ }^{\wedge}$ Unprotected terminal blocks on supports are generally fixed on 12×2 flat bars for

 connecting protective conductors
${ }^{\wedge}$ Combining IP 2x terminal blocks and support Cat. No. 04810 enables a 2P, 3P or 4P distribution block to be created

Empty support for terminal blocks enables exactly the right number of connections to be created

Distribution blocks

(continued)

2 Lexic supply busbars

Supply busbars can be connected directly and supply power to Lexic modular devices up to 90 A . They are available in single, two, three and four pole versions. hey are a flexible solution, taking up little space, and are easy to adapt for distribution in rows.

${ }^{\wedge}$ Supply busbar supplied via universal terminal Cat. №. 04906

^ Distribution via four pole supply busbar Cat. No. 04954 fitted with end protectors Cat. №. 04991

3 distribution terminals

These single pole distribution blocks are fixed directly in the terminals of DPX 125, 160 and 250 ER devices and modular Vistop devices from 63 to 160 A . They are used for simplified distribution for panels where the number of main circuits is limited

Six $35 \mathrm{~mm}^{2}$ rigid outputs ($25 \mathrm{~mm}^{2}$ flexible) for the output terminal Cat. №. 0486

4 MODULAR DISTRIBUTION BLOCKS

hese combine compactness and high connection capacity. With a modular profile, they are fixed by clipping distribution blocks are totally isolated they oula the the are used ratings.

^ Totally universal, distribution blocks are suitable for all types of application

^ Single pole modular profile distribution blocks, total insulation of the poles to distribute 125 to 250 A

${ }^{\wedge}$ For the supply end of medium power distribution panels, the 250 A modular distribution block Cat. No. 04877 can also be fixed on a plate

Distribution blocks

(continued)

5 EXTRA-FLAT DISTRIBUTION BLOCKS

Their lower height and their current-carrying capacities mean that the same panel can manage the power requirements for the supply end lup to 250 Al combined with the compactness of modular rows in slim panels.

$<$ The key features of extra-flat distribution blocks are power, capacity to connect large crosssection cables and compactness.

6 STEPPED DISTRIBUTION BLOCKS

These are available in catalogue versions, complete and fully-assembled from 125 to 400 A , and in a modular version (bars and supports to be ordered separately) that can be used to create customised distribution.
<125 A stepped distribution block
<250 A distribution
blocks Cat. №. 37435
^ 400 A stepped distribution block

7 SINGLE POLE ALUMINIUM/COPPER

 CONNECTION BOXESDesigned to provide the interface between large cross-section conductors entering the panel, including those made of aluminium, and inet,

$$
\begin{aligned}
& \text { wiring conductors } \\
& \text { Two models } 120
\end{aligned}
$$

wo models $120 \mathrm{~mm}^{2} / 70 \mathrm{~mm}^{2}$ (Cat No. 37480) and $300 \mathrm{~mm}^{2} / 185 \mathrm{~mm}$ Cat. No. 3748 I) are available. hey can also be used for alumiublest or when the lin loughing cables) or whe the ling sections

8 viking ${ }^{\text {TM3 }}$ POWER TERMINAL

 BLOCKSThese single pole blocks are used for the junction between the enclosure and the external cables. They re fixed on a $_$rail or a plate and take CAB 3 and Duplix labelling. They provide numerous solution or connection with aluminium or copper cables, with or without lugs.

Choice of products

Supply bushars from 63 to 90 A (lpk 17 kA

Type	Length	Universal 1-pole + neutral or 1-pole	2-pole	2-pole balanced on 3-phase	3-pole	4-pole
	1 row	04926	04938	04940	04942	04944
	meter	04937	04939	04941	04943	04945
Fork-type	1 row	04911	-		04917	04918
	meter	04912	04914		04920	

Distribution terminal blocks from 63 to 100 A (lpk 10 kÂ)

Distribution terminal blocks from 63 to 100 A (lpk 10 kÂ)					
Number of outputs	Bare terminal blocks		Insulated terminal blocks IP 2x (xxB)		
	with screws	on support	black	blue	green
4	04801	04820	04850	04840	04830
6			04816	04815	
8	04803	04822	04852	04842	04832
12		04824	04854	04844	04834
14	04805				
16		04825		04845	04835
19	04806				
21		04826		04846	04836
24	04807				
33		04828		04848	04838

Modular distribution blocks from 40 to 250 A (lpk 14.5 to 42 kA)									
Admissible maximum rating (A)	2-pole			4-pole			Terminal blocks IP 2x		
	Cat.Nos	Number and section of flexible conductors (mm^{2})		Cat.Nos	Number and section of flexible conductors (mm^{2})		Earth	Neutral	Additional outputs (mm^{2})
		Inputs	Outputs		Inputs	Outputs			
40	04881	2×10	11×4	04885	2×10	11×4	04834	04844	12×6
100	04880	2×16	5×10	04884	2×16	5×10	04832	04842	8×6
125	04882	2×25	$2 \times 16+11 \times 10$	04886	2×25	$2 \times 16+7 \times 10$		04844	12×6
				04888	2×25	$2 \times 25+11 \times 10$	04835	04845	16×6
				04876	1×35	$\begin{gathered} 1 \times 25+1 \times 16+ \\ 14 \times 10 \end{gathered}$		04846	21×6
160				04879	1×70	$\begin{gathered} 2 \times 25+4 \times 16+ \\ 8 \times 10 \\ \hline \end{gathered}$		04845	16×6
250				04877	1×120	$\begin{aligned} & 1 \times 35+2 \times 25+ \\ & 2 \times 16+6 \times 10 \end{aligned}$			

Single pole modular distribution blocks and distribution terminal from 125 to 250 A (lpk 27 to 60 kÂ)				
	Admissible maximum rating (A)	Cat.Nos	Number and section of conductor per pole (mm^{2})	
			Inputs	Outputs
modular distribution blocks	125	04871	4×35	12×10
	160	04883	1×50	$3 \times 25+2 \times 16+7 \times 10$
	250	04873	1×120	$6 \times 25+4 \times 10$
distribution terminal	160	04867	Direct into downstream terminal	6×25
	250	04868	Direct into downstream terminal	$4 \times 35+2 \times 25$

Power distribution blocks from 125 to 400 A (lpk 20 to 75 kA$)$						
Admissible maximum rating (A)	Extra-flat			Stepped		
	Cat.Nos	Number and section of conductor per pole (mm^{2})		Cat.Nos	Number and section of conductor per pole (mm^{2})	
		Inputs	Outputs		Inputs	Outputs
125	37447	1×35	$\begin{aligned} & 10 \times 16(\mathrm{Ph}) \\ & 17 \times 16(\mathrm{~N}) \end{aligned}$	37395	4 bars $12 \times 4 \mathrm{~mm}$ receiving 5 connectors 2×10 each	
				37430	1×35	5×25
160				37431	1×70	5×35
250	37400	1×150	$\begin{gathered} 1 \times 70 \text { or } 1 \times 50+ \\ 1 \times 35 \text { or } 2 \times 35 \\ \hline \end{gathered}$	37435	1×120	5×50
400				37308	$2 \times 8.5 \mathrm{~mm}$	21 holes M6 $70 \mathrm{~mm}^{2}$ max. connectors
				37442	2×185	15 holes M6 +15 holes M8

Aluminium/copper distribution boxes				
Admissible maximum rating (A)	Cat. Nos	Number and section of conductor per pole (mm ${ }^{2}$)		
		Input aluminium	Input copper	Output copper
300	37480	1×120	1×95	1×70
540	37481	1×300	1×150	1×150

37324

37310

37366

Isolating supports and copper bars

Busbar supports			I Admissible maximum rating (A)								
			125	160	250		400	800	1000	1600	4000
Universal supports		1-pole	37398		37437						
		4-pole	37396	37432		37436	37310				
XL ${ }^{3}$ suppo		4-pole					37315	37320	37321	373 22/23	373 24/25
Maximum number of bars per pole											
Copper bars	12×2	37388	1								
	12×4	37389	1	1							
	15×4	37433			1						
	18×4	37434		1	1		1	1			
	25×4	37438			1	1					
	25×5	37418					1	1			
	32×5	37419					1	1			
	50×5	37440						1	1	2	4
	63×5	37441							1	2	4
	75×5	37459							1	2	4
	80×5	37443							1	2	4
	100×5	37446								2	4
	125×5	-									4
	50×10	-									3
	60×10	-									3
	80×10	-									3
	100×10	-									3
	125×10	-									3

Isolating supports for C-section busbars and aluminium bars (up-to 1600 A)

Isolating support	Enclosure depth (mm)	Bars aligned	Bars staggered
	475 or 725	37366	37367
	975	37368	37369
Aluminium C-section bars	Cross section (mm ${ }^{\text {2 }}$)	Cat.Nos	
	524	37354	
	549	37355	
	586	37356	
	686	37357	
	824	37358	

POWER GUIDE:

A complete set of technical documentation

01 | Sustainable
development

02 | Power balance
and choice of power supply solutions

03 | Electrical
energy supply

04 | Sizing conductors
and selecting
protection devices and protection devices

06 | Electrical
hazards and
protecting people

07 | Protection
against lightning
effects

10 | Enclosures and assembly certification

11 | Cabling components and control auxiliaries

12 | Busbars and distribution

08 | Protection against external disturbances

09 | Operating
functions

13 | Transport and distribution inside an installation

Annexes
Glossary
Lexicon

47 legrand

World Headquarters and International Department 87045 Limoges Cedex - France区 : + 33 (0) 555068787 Fax : + 33 (0) 555067455

[^0]: (1) Stainless steel threaded assembly rod, diameter 8 to be supplied separately and cut to length

[^1]: (1) The thermal stress limited by the upstream device must be less than the ${ }^{12}$ of the distribution block, and

