Operating functions

Nค~~~~~

POWER GUIDE 2009 / BOOK 09

INTRO

Abstract

Irrespective of the requirement for continuity of service, operation and maintenance work on installations must be carried out in maximum safety. They must be performed in accordance with strict protocols to ensure everyone's safety: those carrying out the work and others. This work requires special isolation, locking, separation (forms) and signalling devices, which are added to the basic breaking and protection functions.

Safety standards and regulations govern this field under the generic term "safety requirements". In addition, breaking devices for emergencies are generally required by specific texts: safety of workers, public buildings, etc. In modern installations, additional provisions and methods are necessary to meet the ever-increasing requirements for reliability, continuity of service, adaptability, safety and management of energy sources.
Standard operational actions: switching on/off, changing power supply, measurements, resetting, are more and more often centralised or automated. For this, auxiliaries are used for remote control (coils, motor-driven controls. etc.) and for feeding back information on the status of devices.
Locking out structures and equipmentLockout operations03

1. Separation 03
2. Immobilisation 04
3. Dissipation lor setting to the lowest energy level) 04
4. Checking 04
5. Signalling 04
6. Identification 04
Definitions (usual terms) 05
7. Structures 05
8. Operational actions 05
9. Training and qualification 07
10. Accreditations 07
11. Authorisations 08
12. Immobilisation 08
13. Locking 08
Standard diagrams with locking procedures 09
Work on equipment 12
14. Fixed devices 12
15. Plug in devices 12
16. Draw-out devices 12
17. Busbars 13
Physical accessibility and protection provisions
Separation forms 14
18. Form 1 15
19. Forms 2a and 2b 15
20. Forms 3a and 3b 16
21. Forms $4 a$ and 4b 17
22. Determining forms with XL PRO² software 18

Motorisation and supply inversion

Motor-driven control 20
Supply inverters 21
Control units 22
Emergency breaking and stops, isolation
Emergency breaking 24
The emergency stop 28
solation 30

1. Isolation with permanent contact indication 30
2. Isolation with visible contact indication 31
Choice of products
$D M X^{3}$ ACBs and $D M X^{3}$-I trip-free switches 32
DMX-E air circuit breakers 34
DPX circuit breakers and DPX-I trip-free switches 36
DRX circuit breakers 40
DPX-IS and Vistop isolating switches 41
XL ${ }^{3} 4000$ forms 42

Locking out structures and equipment

Isolation, switching, checking, testing and maintenance are all operations that must be carried out and planned with great care, in order to maintain the safety of people and property. To this end, a number of duly identified and organised actions are necessary. Together they constitute locking out.

To ensure continuity of operation and even safety, the lockout operations must as far as possible be restricted to limited parts of the installation. It is therefore necessary to have full knowledge of the entire operation of the installation before locking
out part of that installation. This applies to industrial processes, and also commercial installations (for example, data centers) especially when there are several power supplies.

Example of a power supply layout for a data centre

LOCKOUT OPERATIONS

The "lockout" or "safety procedure" is a precise, clearly-defined operation, the aim of which is always to ensure that situations are, and remain, safe. This will enable people to work on all or part of an installation (or a device), with return to operation (removal of lockout) only being possible by the intentional, concerted action of those responsible. Lockout consists of a number of essential steps:
separation, immobilisation, dissipation, checking, signalling and identification.

1 SEPARATION

This consists of "de-energising" all power, control and monitoring, and emergency circuits by breaking with visible or positive contact indication.

Head-end breaking

Head-end breaking can be carried out by an isolating switch or an isolating switch with visible contact indication (Vistop, DPX-IS) or by a device which has both adequate clearances and reliable control between the position of the contacts and that of the operating device (DPX).
This condition can be met by using a DPX or DMX type draw-out device or by combining an isolating switch with a DPX circuit breaker.
\square Positive contact indication

Positive contact indication ensures there is a permanent mechanical link between the contacts and the operating handle. The position of the operating handle indicates the actual position of the contacts. It cannot be set to OFF if the contacts are soldered
\square Visible contact indication

The Vistop and the DPX-IS provide isolation with visible contact indication. The operating handle can have up to 3 lockout padlocks

Locking out structures and equipment (continued)

2 IMMOBILISATION

This is carried out by mechanical means using padlocks or locks. It prevents any intentional or accidental operation of the immobilised device. It should be noted that profiled keys (triangle, square, etc.) are not permitted for this function.

^ Immobilisation of a DPX 630 with padlocking accessory and padlock

3 DISSIPATION IOR SETTING TO THE LOWEST ENERGY LEVEL)

This consists of discharging the capacitors. For maximum safety, it includes the earthing and short-circuiting of the conductors. It is compulsory above 500 V , but is not compulsory below this level (LV range) unless there is a risk of induced voltages, capacitive effects (capacitors or considerable lengths) or a risk of backfeed.

4 CHECKING

This must be carried out as close as possible to the location of the operation, with a standard device for "detecting the absence of voltage" (EN 61243-5) between all the conductors including the neutral and between those conductors and earth. Multimeter or tester type checking devices are expressly prohibited. These first four systematic steps must be accompanied by the means required for informing people "not working and working" on the equipment.

5 SIGNALLING

This consists of clear, precise and permanent information on the lockout status of the installation. It may be necessary to mark out the area.
It should be noted that in the LV range
l< 500 V), it is possible to affix a sign
prohibiting operation of the separation device
in exceptional circumstances if the device has
no means of immobilisation. This practice
must not be permitted if the device cannot be
seen from where it is operated.

6 IDENTIFICATION

This must enable targeted work, with no ambiguity, to be carried out on the device or part of the installation concerned. To this end, up to date wiring diagrams, geographical location maps, markings, etc., must be available.

DEFINITIONS (USUAL TERMS)

1 STRUCTURES

Although the general principles remain the same for all lockout operations, the measures to be taken may differ depending on the scope concerned: network installations, devices and equipment.

1.1. Distribution networks

This concerns the part of the structures that is the responsibility of the energy distribution company. Rules (for example, EDF specifications), which are subject to specific decrees, are applicable to these networks.

1.2. Electrical installations

These consist of all the equipment involved in the transformation, transport, distribution and provision of energy.
The main LV distribution board is part of the installation.
Standard IEC 60364-1 establishes harmonised international rules for the design, setup and checking of electrical installations. These rules are designed to ensure the safety of people, animals and property with regard to the hazards and damage that may occur during reasonable use of electrical installations and to ensure correct operation of these installations. Standard IEC 60364-1 applies to the design, setup and checking of electrical installations such as those in: residential buildings, commercial buildings, public buildings, industrial establishments, agricultural and horticultural establishments, prefabricated buildings, caravans, campsites and similar installations, construction sites, funfairs, fairs, exhibitions and other temporary installations, marinas, external lighting and similar installations, medical premises, mobile or transportable units, photovoltaic systems, low voltage generating sets.
Numerous national standards or regulations are often added to these basic rules. In France, for example, these may include the decree of 14 November 1988
on the protection of workers in premises where electricity is used, the Safety Regulations for Public Buildings and various standards said to be for installations: NFC 13-100 (supply stations), NFC 13-200 (high voltage installations), NFC 14-100 (Connection installations), etc.

1.3. Devices and equipment

These consist of busbar systems and accessories. Secondary distribution boards and terminal boards containing controls and protection are included in devices and equipment. There are many applicable standards, specific to each item of equipment or family of devices: the EN 60439, EN 60204, EN 60947, etc. series of standards.

2 OPERATIONAL ACTIONS

Operational actions are intended for standard operations: switch on/off, connections for this purpose, measurements, resetting that can be carried out without any particular risk in the context of normal operation.

Locking out structures and equipment (continued)

These must not be confused with emergency operations, which arise from the need to provide optimum protection of people and property within the context of dangerous circumstances. Operational actions require basic safety precautions, taking care in particular to use personal protection devices (insulated gloves), measuring devices and appropriate test plugs, insulated pliers, etc.
The risk of short-circuits must be minimised in view of their consequences.
In principle, the steps must be taken after first carrying out an analysis which includes:

- The type of work (measurements, testing,
connection, cleaning, etc.)
- The general environmental conditions, in particular the atmospheric conditions (precipitation or risk of storms)
- The actual conditions of inaccessibility to unqualified people or possibility of contact with the earth potential - The requirements specific to "live working" which are divided into: "insulated glove working", "safe clearance working" or "bare hand working". These are in all cases subject to specific accreditation granted by the head of the establishment. Carrying out live work is subject to the appropriate procedures and requires special protection equipment and tools.

Titles of those involved according to standards

Standard EN 50110-1 has laid the foundations of European harmonisation aimed at gradual alignment of the safety levels associated with the operation of, and work on or near installations. These minimum specifications can be supplemented by additional national requirements. In France, the collection of general electrical safety instructions UTE C 18-510 constitutes the main reference document in the field. Its presentation in the form of a booklet is aimed at making it a real everyday tool. The following definitions concerning people are taken from this book. Those marked (EN) are also used by standard EN 50110-1.

■ Employer

Person who, directly or indirectly, assumes legal responsibility in the context of the Labour Regulations. To avoid any confusion between the company which is the ordering customer and the company carrying out the work, the term head of the establishment or operator can be used for the former and company manager for the latter.
\square Operation supervisor (EN)
Person designated by the employer to carry out the operation of an electrical structure, including the performance of work and interventions.
■ Electrical lockout supervisor
Person designated by the employer or the operation supervisor to carry out all or part of the lockout and to ensure appropriate safety measures are taken.
■ Requisition supervisor
Person designated by the operation manager, responsible
for requisitioning all or part of structures, mainly networks or installations spread over wide areas. For the requisitioned part, he/she may then perform the role of lockout supervisor.
\square Works supervisor (EN)
Person who manages work. Responsible for taking, or ensuring others take, safety measures, and ensuring they are implemented. This person may work on his/her own, or be involved in the work he/she manages.
■ Test supervisor
Person who manages tests. He/she is responsible for taking the necessary measures and ensuring they are implemented.

\square Operative

Person designated by his/her employer to carry out work in accordance with a verbal or written instruction. He/she must have the appropriate qualification for the work to be performed.

■ Electrical safety supervisor

Safety specialist made responsible by his/her employer for monitoring the safety of people working on or in the vicinity of the electrical structures.

■ Qualified person (EN)
Person with the appropriate knowledge for carrying out the tasks assigned to him/her.

■ General foreman

Person carrying out on-site management of non-electrical work in the installation. If he/she carries out electrical work, he/she is called the works supervisor.

3 TRAINING AND QUALIFICATION

A special theoretical and practical training programme, representative of the work to be carried out, must be drawn up to develop and maintain the ability of qualified or well-informed people to carry out electrical work and in particular live work. At the end of the training, the participant must be awarded a certificate. The aptitude level is validated by accreditation which must be renewed if the person changes job or line manager, has a long break from work, medical restrictions, clear lack of aptitude, or if there are significant changes to work methods or installations.

4 ACCREDITATIONS

Accreditation consists of the recognition by the employer of a person's aptitude to perform the tasks assigned to him/her totally safely. A written certificate of accreditation, including the identification and approval of the parties and the code of the level of accreditation, must be given to the employee. This certificate does not however release the employer from his/her responsibilities. The accreditation level must be appropriate to the work to be carried out: it will be different for example for the painter who is working in a transformer room and the electrician working on the transformer itself. But it is essential that they have both received training appropriate to the risks incurred to themselves and to others.

Accreditation is obviously necessary for carrying out electrical work, but it is also required for managing this work, for monitoring, for locking out an installation, for carrying out tests and taking measurements, and of course simply for unsupervised access to an area reserved for electricians. For example, the person who carries out the cleaning on a test platform must be accredited accordingly.

Locking out structures and equipment (continued)

5 AUTHORISATIONS

Whatever work is undertaken, the lockout operation itself must form the subject of written documents and above all confirmation that these documents have been safely received by the addressee. Messages sent electronically (faxes, emails) must be subject to appropriate precautions regarding the guarantee of receipt and their being understood. A reply message with the identification number of the original message is compulsory. The read receipt is not sufficient. The lockout certificate will be used for this purpose. It must be sent to the works supervisor, marked with the date and time, and must incorporate a section for notification of the end of work. Other documents may be used. The list given here is not exhaustive: work order, operation sheet, instruction, notice of requisition, certificate of separation from the public distribution network, etc. For further details, please refer to the statutory texts currently in force.

6 IMMOBILISATION

The purpose of immobilisation is to prevent the operation of the separation device. It must include the mechanical immobilisation of the device and the disabling of all controls, whether these are electrical, electronic, radio, etc.
In addition an indication (display, indicator, etc.) must clearly signal the immobilised state.

[^0]
< Adaptable locking unit on draw-out DPX 630

7 LOCKING

Only locking can ensure the immobilised state. Several locks are often used together:

- To order the sequence of operations lorder of commands)
- To make the operations interdependent and alternative (for example, supply inversion) - To necessitate the simultaneous action of several people (increased safety).
Locking is carried out taking into account the safety of people and property, for example: prevention of access to HV cells before they are de-energised, prevention of the opening or closing of an isolating switch which is on-load, etc.
When the key is released by the first lock and thus allows a second lock to be operated, this is referred to as interlocking with key transfer.
The locking sequence may also require the release of several keys: in this case a device with multiple locks enables the first key, referred to as the "mother key", which must remain captive, to release several keys, referred to as daughter keys.

The basic locking principle is based on the uniqueness of the key. One key may operate one or more locks, but it must never be possible for one lock to be operated by two identical keys.

STANDARD DIAGRAMS WITH LOCKING PROCEDURES

In all cases the choice of locks and safety positions requires prior analysis of the locking sequence to be applied in order to correctly define the requirement and clearly identify the related risks. "Electric" locking systems are never considered to be adequate. In principle, only "mechanical" locking systems are capable of ensuring safety las long as they themselves are reliable).
There are various possible graphic representations of locking mechanisms. Some representations give the status of the lock (bolt pushed in or not pushed in) and the key (not captive or captive). Diagrammatic symbols are also used, but it is advisable to explain complex sequences in words.

Example of diagrammatic symbols (source APAVE-France)

Lock mechanism assembly	\square
Lock with key never captive	\square
Lock with key always captive	\square
Lock with key captive device closed	

Functional symbols			
Mechanical locking	$-\nabla-$	Keys head-to-tail	$\Delta \cdot-$
Lock mechanism assembly	\square	Key not in lock/bolt pushed in free operation	$\begin{gathered} 1 \\ 0 \\ 0 \end{gathered}$
Key captive	\bigcirc	Key not in lock/bolt not pushed in operation blocked	(1) 0
Key not in lock	\bigcirc	Key not captive/bolt pushed in free operation	$\begin{gathered} (1) \\ \square \end{gathered}$
Key not captive	\varnothing	Key not captive/bolt not pushed in operation blocked	$\stackrel{\varnothing}{\varnothing}$
Key operation - insertion - extraction	\uparrow introduction extraction	Key captive/bolt pushed in free operation	
Lock on door	\square	Key captive/bolt not pushed in operation blocked	

Locking out structures and equipment (continued)

Example 1: Locking between earthing switch, HV switch and cell door

Locking sequence:

- Opening of switch I
- The key is released
- Transfer of key A to isolating switch S
- Closing of isolating switch S
- Key B is released
- Opening of the cell door with key B
- Key B remains captive

Example 2: Locking cells on HV loop system

Example 3: Locking on supply inversion and on HV station

The draw-out circuit breaker is fitted with two locks.
In normal operation, the circuit breaker I is closed, and keys A and B are captive.
Opening the circuit breaker releases keys A and B. Key A is transferred to the HV cell upstream (see example 2).
Key B is transferred to the standby supply (see example 4).
Locking between the standby supply (circuit breaker G) and the HV cell may also be specified (second lock).

Example 4: HV/TR/LV locking (functional symbols)

Used in supply stations with LV metering, this sequence, which is one of the most common, is used to access the terminals of the transformer after:

- Opening and locking of the LV circuit breaker
- Opening and locking of the HV cell
- Earthing of the separate HV supply

Service state:

- The LV circuit breaker is closed
- Key 0 is captive
- The HV cell is closed
- Key S is captive
- The transformer terminals are not accessible

Locking sequence:

- Opening and drawing out of the LV circuit breaker
- Key 0 is released
- Transfer of key 0 to the lock on the HV cell
- Opening of the HV switch and closing of the earthing switch by mechanical control. Operation is possible by key transfer, as in example 1
- Key 0 becomes captive
- The cell panel can be opened
- Key S can be removed
- Unlocking of the immobilisation cover of the plug-in terminals
- Key S becomes captive

Locking out structures and equipment (continued)

Example 5: Locking on LV supply inversion

A standby power supply must only be coupled on an installation when it is certain that the main power supply is disconnected. Likewise, when devices cannot be installed side by side (supply inverter plate with integrated interlocking mechanism) or they are different types (for example, lower protected power), interlocking by key must be provided.
In normal operation: supply via transformer. Circuit breaker I is closed. Key A is captive.
In standby operation: circuit breaker I is open. The associated lock is unlocked and key A is released.
Key A is transferred to the lock on circuit breaker G, which is closed.
Key A is captive.

WORK ON EQUIPMENT

Power circuit breakers (devices designed to provide breaking and protection) are generally referred to using three terms: fixed, plug-in and draw-out.

1 FIXED DEVICES

Their connections can only be made or broken when their power supply is off (for example, connections on terminals or connectors). In general, it takes a certain time to fit and remove them and require a minimum number of tools. These devices are designated by the letter F ("Fixed parts").
They require an appropriate lockout upstream.

2 PLUG IN DEVICES

Plug-in (or disconnectable) devices can be inserted or removed without powering down the relevant circuit. Connection and disconnection are only possible when the device is open. Otherwise, disconnection causes mechanical breaking of the device.

Plug-in devices can, in simple situations, be used for isolation and making safe, but they are primarily used for their interchangeability, which makes maintenance much easier. They are designated by the letter D ("Disconnectable parts").
In general they do not require locking out of the installation.

3 DRAW-OUT DEVICES

In addition to the advantages of plug-in devices linterchangeability and isolation with visible contact indication), draw-out devices can be used, due to an associated mechanism, to control connection and disconnection, to enable testing and measurements while maintaining the continuity of the auxiliary circuits and breaking the main circuits, to display the status of these circuits, and by means of various systems (padlocks, locks, etc.) to lock the device for lockout operations.

Draw-out devices can be designated by the letter W ("Withdrawable parts").
Plug-in or draw-out DPX and draw-out DMX ${ }^{3}$ allow safe (IP 2x) and separate work on each circuit. DPX pre-equipped bases can take devices at a later date in the context of a scheduled extension.
As long as the device is not open, a safety system prevents any removal of the faceplate.

States of the circuits for different positions of draw-out DPX

Circuis	C onnected position	$\begin{gathered} \text { Test } \\ \text { position } \end{gathered}$	Isolation	Drawn outposition
Main		1	\bigcirc	\bigcirc
Auxiliary			\bigcirc	\bigcirc
connected:	Open: $)^{\text {I }}$ Eohted: \bigcirc			

4 BUSBARS

Work on busbars almost always requires the upstream locking out of their power supply.
The use of a minimum separation form (form 2) provides protection against accidental contact if working in the vicinity.
Forms 3 and 4 combined with plug-in or draw-out devices provide solutions that allow individual safe access to the various outgoing lines, without the need for total lockout of the installation.

Physical accessibility and protection provisions

The main objective is to maintain the availability of the power supply while allowing safe working (protection index xxB) and limiting the effects of any internal fault in the panel larcs, electrodynamic forces, disconnection, etc.)

SEPARATION FORMS

Forms are used to provide a gradual, appropriate response to the accessibility and protection of the main components of a power distribution panel: busbars and breaking and protection devices (functional units).
The type of form chosen will be determined according to the qualification of those involved, the protection required and the required level of maintainability. The use of forms enables the panel to be divided into closed protected spaces in order to achieve four objectives:

- Protection against direct contact with dangerous parts of neighbouring functional units (the degree of protection must be at least IP xxB).
- Protection against the entry of solid objects. The degree of protection must be at least IP2x (degree IP $2 x$ covers IP xxB). These two requirements assume that the assembly is equipped with faceplates. - Limitation of the effects of the spread of electric arcs.

< Form 4b in the process of being set up in an XL ${ }^{3}$ enclosure
- Facilitation of panel maintenance operations. Standard EN 60439-1 defines the internal separation of assemblies into 7 types of form (1, 2a, 2b, 3a, 3b, 4a and 4b).
This internal separation is achieved in $\mathrm{XL}^{3} 4000$ enclosures using barriers or screens made of metal or insulating material.
$\mathrm{XL}^{3} 4000$ enclosures and their accessories can be used to create all types of form.

Separation used to create forms limits the natural ventilation of the panel and can therefore result in rises in temperature. It will inevitably increase the size and cost of the panel, both in terms of labour and components.

Form levels

As a general rule conformity with a higher level of form involves conformity with the lower levels of form, except for levels 3a, 2b and 2a.

1 FORM 1

Form 1 does not require any separation between the components inside the enclosure.

2 FORMS 2a AND 2b

Form 2a is the simplest for protecting against accidental contact with the busbars, which are considered to be the most dangerous components. Form 2b includes additional separation to make it safe to work on outgoing lines.

Requirements of standards and creation in XL^{3} enclosures

■ Form 2a

Separation of busbars from functional units.

Terminals for external conductors do not need to be separated from busbars.

■ Form 2b

Separation of busbars

 from functional units.Terminals for external conductors are separated from busbars.

In XL^{3}, the separation with the busbars is provided directly by the fixing plates. The devices are connected on rear terminals

Physical accessibility and protection provisions (continued)

3 FORMS 3a AND 3b

In form 3a, each device is isolated in a compartment which protects it from the effects of incidents which may occur on another device. Form 3b combines the advantages of form 3a and form 2b, separating the output terminals and the busbars.

Requirements of standards and creation in XL^{3} enclosures

■ Form 3a

Separation of busbars from functional units and separation of all functional units from each other.

Terminals for external conductors are not separated from busbars.

Form 3a is constructed based on form 2a with the addition of horizontal separations between the devices and vertical separations between the enclosures

■ Form 3b

Separation of busbars from functional units and separation of all functional units from each other.

Terminals for external conductors are separated from busbars.

Form 3b is constructed based on form $2 b$ with the addition of horizontal separations between the devices

4 FORMS 4a AND 4b

The requirements of form level 4 a further increase the safety of working on outgoing lines by isolating the output terminals in the same compartment as the device. Form 4b provides maximum safety by separating all the functions from one another.

Physical accessibility and protection provisions (continued)

5 dETERMINING FORMS WITH XL PRO ${ }^{2}$ SOFTWARE

5.1. Input data

To produce a design that includes forms, two mandatory pieces of information must be entered:

- The choice of product (DPX - DMX ${ }^{3}$ - DX)
- The associated busbar

A busbar can be associated with the main device either in the "Nomenclature" module (Cabling products > Associated busbars and distribution blocks) or in the "Arrangement" module (right-click on the circuit breaker, select "Associate with this product" and then "Associated busbars").

The busbar must be "top horizontal" or "side vertical" as these are the only distribution arrangements that can be partitioned in forms. If the assembly consists of more than two enclosures, the vertical busbars will be automatically connected using a top horizontal busbar.
The horizontal busbar can be removed later if necessary.

XL-Pro ${ }^{2}$ automatically creates branch busbars and the cable sleeves used to mount them.

5.2. Arrangement

Irrespective of the level of form required, the reference position for DPX is horizontal mounting.
In the "Arrangement" window, select all the devices then right-click to select "Mounting" then "Horizontal" (or click directly on the icon *). All the devices selected will be transformed into horizontal mounting position (if this was not already the case). If the DPX are not positioned horizontally, XL-Pro ${ }^{2}$ will do this automatically when the type of form is chosen, except in the case of supply inverters.

For horizontally mounted supply inverters, select the inverter in the "Arrangement" window and right-click to select "Inverter mounting" and then "Horizontal".

Depending on the installation of the panel, select whether devices will be connected via front terminals or rear terminals.
In the "Arrangement" window, select all the devices then right-click to select "Connection" then "Front Terminals" or "Rear Terminals" (or click directly on the icon 目).
All the devices selected will be transformed into front terminal or rear terminal connection depending on the choice made.

5.3. Selecting the enclosures

Products are selected in the same way as for a standard design.
In the "Enclosures" window click on the "Forms..." button. If the panel does not have any associated busbars, XL-Pro ${ }^{2}$ suggests adding one.

A window divided into 3 sections opens, for selecting:

1. The level of form required
2. The type of connection (front terminal or rear terminal)
3. The circuit diagram (power supply from the right, left or a "head-to-tail" power supply)

The "head-to-tail" circuit diagram is used to limit the number of branch busbars land therefore the amount of copper used) but it requires alternate mounting of circuit breakers in the same enclosure assembly. In this case, the direction of opening must be clearly marked in order to ensure there is no ambiguity.

5.4. Preview

Once this information has been entered, XL-Pro ${ }^{2}$ recalculates which enclosures are compatible. If the message "No family accepts the products selected" appears, this means that a product is incompatible with the enclosure configurations used to create the level of form required. Example: technical impossibility of mounting a DPX-IS horizontally as mounting plates are only available for mounting in a vertical position. For these specific cases concerning DPX-IS, it is advisable to use special plates and faceplates for vertical mounting, with connection on the front terminals, and to partition the space between the mounting plates using adjustable solid plates.

Motorisation and supply inversion

Motor-driven control can be used both in automated processes and safety processes (priority of service, breaking for fire, etc.). They enable remote control of supply circuits and load circuits in the context of building management. Automatic supply inversion is one of the main applications of motor-driven control.

MOTOR-DRIVEN CONTROL

Motor-driven controls enable remote control of the operation of the remote devices (on, off, reset). They are associated with appropriate electrical control layouts according to requirements.
In direct control layouts, operation is not instant and the changes of state take a few seconds. They are used more in control sequences in which this time is taken into account.
It is not advisable to use them for "emergency breaking" and their use must be prohibited for "emergency stops".
Examples of layouts for these emergency functions are given on pages 27 and 29.
Layouts with control auxiliaries can be used in all situations. They enable multiple operations and pulse control, incorporating notions of positive safety (undervoltage releases).

^ The motor-driven controls for DPX can be installed in the factory or directly on-site on wired devices

SUPPLY INVERTERS

Supply inversion meets the dual requirement of continuity of service and increased safety. Historically used in hospitals, public buildings, continuous production processes, airport and military applications, there is now increasing demand for supply inversion in telecommunications and data processing applications and also in the management of "renewable" energy sources.
Supply inversion performs the following functions:

- Switching from a main (or normal) supply to a standby (backup) supply in order to supply circuits that require continuity of service
- Switching from a main supply to a standby supply

The supply inversion device ensures continuity of operation by switching over to a standby supply if there is a fault on the main supply. This supply inversion is carried out totally safely due to the mechanical and electrical interlocking devices.
It can be classified into three categories, depending on the degree of automation of the function.

- Manual: The simultaneous closing of both devices is prohibited by a mechanical interlock device integrated in the devices' support plate. It is only possible to close one device if the other device is open.
- Remote control: The devices are equipped with "motor-driven controls". The closing and opening operations are therefore carried out remotely. The electrical layout and the control system must be created on a case by case basis depending on the requirements.
- Automatic: A control unit manages the inversion.
The switchover to the standby supply is carried out automatically if there is a fault on the main supply, and vice versa after the restoration of this supply.

(2 $2^{\text {nd }}$ supply) for managing energy sources (energy saving by using sources other than the network, which may be linked to a load-shedding function) - Management of the operation of the safety supply for supplying safety circuits.

The supply inversion control system must not be confused with an uninterruptible power supply (UPS).

Motorisation and supply inversion (continued)

Legrand supply inverters are available in three categories (manual, remote control and automatic) with DPX 160, 250 ER, 250, 630, 1600, DMX³ 2500, 4000 and DMX-E devices in fixed and draw-out circuit breaker or switch versions.
Like motor-driven controls, supply inversion can be carried out in accordance with two control principles:

- One, without coils, which enables simplified wiring but involves longer operating times (a few seconds) - The other, based on the use of shunt coils mounted in the devices, which provides virtually instant changes of state.
In practice, the emergency breaking function applied to inversion devices can only be provided without adding any components with the second principle, or by adding control coils with the first principle.

^ DPX supply inverter with motor-driven controls

CONTROL UNITS

Legrand control unit Cat. No. 26193 is used for simple control of the automatic switching of two sources. Controlled by a microprocessor, it is fully programmable. All the parameters are adjustable: voltage thresholds, switching times, startup of a generator set, etc.
The state of the inverter and the presence of voltages and their values for each source can be constantly monitored via the digital and LED display on the front panel.
Unit Cat. No. 26194 has the same characteristics and can in addition be controlled remotely using supervision software via a link to a PC.

Front panel of control unit

Example of logic diagram of operation for automatic supply inversion

Emergency breaking and stops, isolation

As their name indicates, emergency operations are intended to eliminate, as quickly as possible, a danger which occurs unexpectedly. The emergency break is designed to cut off the electrical power, whereas the emergency stop takes account of the danger of mechanical movements.

EMERGENCY BREAKING

Emergency breaking is normally required for all installations in which there may be faults or risks of electric shocks: laboratories, boiler rooms, kitchens, illuminated signs, pumping of flammable liquids, test platforms, etc.
It must break all live conductors (including neutral, but not PE or PEN).
This must be possible on load and in a single operation.
Standard IEC 60364-5-53 defines the conditions for emergency breaking. Specific regulations can extend its application to other circuits.

In principle, the emergency breaking device should be located on or near the devices(s) to be broken, and be easily identifiable (by operating or emergency staff). On/off functional control devices (such as switches, contactors, circuit breakers) can be used for emergency breaking if they meet the above requirements. It should be noted that in this case, the breaking of single phase ($\mathrm{ph}+\mathrm{N}$) terminal circuits is possible with a single pole device. This provision applies in particular to lighting circuits.
The emergency breaking device can be located remotely in the secondary distribution board which supplies all the local circuits, as long as it is easily accessible, identifiable and installed in a location where the danger may occur or be detected.
This provision is designed to avoid accidental operation of the emergency breaking devices by limiting access
to operating staff (for example, in public buildings). Caution: if the door of the board concerned is closed and locked with a key, a separate mechanical control or an external electrical control is necessary. In installations in non-industrial or commercial premises, offices (or similar, measuring less than $500 \mathrm{~m}^{2}$), the main control and protection device at the origin of the installation may be used for emergency breaking, if it is easily accessible.
If there is a need for proximity of the device (in view of the dangers) and inaccessibility is required under normal conditions, emergency breaking must be via a "glass break" device with either direct control (pushbutton) or key release.

For the safety of machinery...

...the emergency stop is defined by standard IEC 60204-1 - a red button on a yellow background

For certain areas or equipment (boiler rooms, cooking equipment, large kitchens, illuminated signs, etc.) the emergency breaking must be:

- Either positive safety type (undervoltage release coils)
- Or accompanied by indication of the open/closed state (indicators, etc.) showing the position of the breaking device.
It should be noted that separate lighting devices/other circuits may also be required (for example, in boiler rooms).
It must be possible to lock the emergency break operating device in the off position.
If this is not possible, the operation to release

the emergency break and re-establish the supply must be carried out by the same person. It is therefore recommended that it must only be possible to perform these two operations from two locations that are near to one another and visible.

The requirements relating to emergency breaking, functional control, emergency stops and isolation are described in standard IEC 60364-5-53.

Emergency breaking and stops, isolation (continued)

It must be possible to use emergency breaking methods, other than the emergency stop (see p. 28), to eliminate an unexpected danger. Examples of this include: ventilation or pumping systems, neon signs, certain important buildings, laboratories, boiler rooms, large kitchens, etc.
The notions of positive safety (use of undervoltage releases) and locking in breaking position are required for these uses, as well as the use of clearly identified devices (red on a contrasting background). In practice, the use of undervoltage release devices must be avoided too far upstream of the installation as they lead to breaking of the main circuits when there is a drop in voltage.
However these devices are not necessary for terminal circuits that do not present any particular danger: heating, lighting, power sockets.

Examples of emergency breaking

Motor-driven control of a DPX circuit breaker with emergency breaking by the off button OFF and shunt coil. Manual reset.

Motor-driven control for DPX circuit breaker with reset by external handle. Opening by undervoltage release.

Direct control of a DPX circuit breaker. Emergency breaking is carried out by the off button EB and the shunt coil SC.

Wiring of motor-driven control Cat. No. 073 70/71/73 for DX circuit breakers. The off button OFF can be used for emergency breaking.

```
AC: auxiliary contact
FS: fault signal contact
SC: shunt coil
UC: undervoltage coil
    EB: emergency breaking
    ON: ON button
    OFF: OFF button
    R: reset
```


Emergency breaking and stops, isolation (continued)

THE EMERGENCY STOP

When movements produced by electrical devices or machines can be the source of danger, these devices or machines must be equipped with emergency stop device(s) located as close as possible to the users. Emergency stops are required for example for escalators, lifts and elevators, cranes and transporters, electrically controlled doors, car washes, etc. And of course for machines: mechanical kneading machines, handling robots, and machine tools in the broadest sense.
Each machine must be fitted with one or more emergency stop devices, which are clearly identifiable, accessible, in sufficient numbers, avoiding dangerous situations arising or continuing.
The stop can be immediate, controlled or delayed, depending on the requirements of the machine, with the power supply only being cut off when the stop takes place.
The emergency stop is not required:

- If its presence does not reduce the risk
- If the stopping time is not shorter than the emergency break
- For portable machines and manually guided machines.

The emergency stop must activated by as direct an action as possible and with the notion of "positive safety": direct action on the contacts opening the circuit or stop given priority in the event of a fault on the equipment or the power supply.

European directive 98/37/EC (concerning machinery) sets technical requirements with which the said machinery and work equipment must comply, including the emergency stop.

Emergency stop for the safety of machinery

Control station with yellow cover and red "push-turn" mushroom head button conforming to standard IEC 60204-1 (1/4 turn to unlock).

Emergency stop devices must be provided for any part of an installation for which it may be necessary to control the power supply in order to eliminate an unexpected danger.
The emergency stop is intended to eliminate a danger, which does not necessarily have an electrical origin, as quickly as possible.

Examples of emergency stops

Conventional layout of supply to a relay with switch-off priority.

Motor-driven control for DPX circuit breaker with automatic reset after closing of the circuit breaker. Opening by undervoltage coil.

Direct on DPX circuit breaker by "mushroom head" button and undervoltage coil.

AC: auxiliary contact	ON: ON button
FS: fault signal contact	ES: emergency stop
UC: undervoltage coil	

ON: ON button
ES: emergency stop

Emergency breaking and stops, isolation (continued)

ISOLATION

Used to separate an installation or part of an installation electrically, the purpose of isolation is to ensure the safety of people working on it.
A breaking device providing the isolation function must be installed:

- At the origin of all installations
- At the origin of each circuit or group of circuits

The isolator must break all the live conductors (including the neutral).
PE and PEN must not be broken.
Isolation does not have to be carried in a single operation (commoning links, fuse carriers), although multipole devices are preferable.
If there is a risk of backfeed, isolation upstream and downstream of the installation may be necessary. The devices which carry out isolation may be isolators, isolating switches, circuit breakers, power sockets, fuse carriers, isolating blades, disconnect terminals or any device which provides a minimum contact opening distance of:

- 4 mm for $230 / 400 \mathrm{~V}$ voltage
- 8 mm for $400 / 690 \mathrm{~V}$ voltage
- 11 mm 1000 V voltage

For double break devices, the distances must be multiplied by 1.25 .

1 ISOLATION WITH PERMANENT CONTACT INDICATION

This characteristic is checked by reliable control between the position of the contacts and that of the control switch handle. The indication "I" or " 0 " (red or green) on the handle thus guarantees the actual contact position. Compliance with standard IEC 60947-2 is evidence of this.

Caution: isolation does not on its own ensure that the installation is made safe. Appropriate methods must be employed to prevent any unwanted re-energising (padlocking, signs, locked rooms, earthing) and lock out the installation (see p. 03).

Requirements concerning isolation are also applicable to machines and work equipment that have to be isolated from their power source(s) in order to carry out adjustment operations or maintenance work. European directive 98/37/EC details the requirements: separation, immobilisation and checking in order to lock out the machine or device.

2 ISOLATION WITH VISIBLE CONTACT INDICATION

The actual position of the separate contacts is directly visible. Visible contact indication can be obtained by means of a display window (Vistop, DPX-IS) or by using plug-in or draw-out devices (DPX, DMX ${ }^{3}$).
It is important to clearly identify the local requirements concerning isolation. For example in France visible contact indication is required for subscriber stations whose power does not exceed 1250 kVA, supplied by a single transformer with LV metering. It is also required upstream of the supply point for monitored power connections.

Other definitions

- Protective breaking:

Breaking associated with a protective function lovercurrents, residual current fault, overvoltage, etc.).

- Functional control:

Control of operation (on, off, variation) for solely functional purposes: thermostats, dimmers and remote control switches are examples of this. Power sockets >32 A cannot perform functional control of a device. They must be combined with a load breaking device.

- Breaking for mechanical maintenance: Breaking solely intended to avoid mechanical risks (movement) during non-electrical work. If they only have this function, they cannot be used for emergency breaking purposes.

Choice of products

28656

DMX ${ }^{3}$ ACBs and DMX³-I TRIP-FREE SWITCHES

Icu (400 V AC)		$D M X^{3}-\mathrm{N} 2500-4000$				DMX ${ }^{3}-\mathrm{H} 2500-4000$				DMX ${ }^{3}$-L 2500-4000			
		50 kA				70 kA				100 kA			
Version		Fixed		Draw-out		Fixed		Draw-out		Fixed		Draw-out	
Poles		3P	4P										
$\ln (A)$	800	28621	28631	28721	28731	28641	28651	28741	28751	28661	28671	28761	28771
	1000	28622	28632	28722	28732	28642	28652	28742	28752	28662	28672	28762	28772
	1250	28623	28633	28723	28733	28643	28653	28743	28753	28663	28673	28763	28773
	1600	28624	28634	28724	28734	28644	28654	28744	28754	28664	28674	28764	28774
	2000	28625	28635	28725	28735	28645	28655	28745	28755	28665	28675	28765	28775
	2500	28626	28636	28726	28736	28646	28656	28746	28756	28666	28676	28766	28776
	3200	28627	28637	28727	28737	28647	28657	28747	28757	28667	28677	28767	28777
	4000	28628	28638	28728	28738	28648	28658	28748	28758	28668	28678	28768	28778

Electronic protection units and accessories

Electronic protection units		Communication	12 V dc external module	Earth leakage power supply	External coil for module	Module earth leakage module	programmable output
MP4 LI	MP4 LSI	MP4 LSIg		28805	2806	28807	28811

$$
\text { DMX }{ }^{3} \text {-I 2500-4000 }
$$

$D M X^{3}-12500-4000$					
Version		Fixed		Draw-out	
Poles		3P	4P	3P	4P
In (A)	1250	28683	28693	28783	28793
	1600	28684	28694	28784	28794
	2000	28685	28695	28785	28795
	2500	28686	28696	28786	28796
	3200	28687	28697	28787	28797
	4000	28688	28698	28788	28798

Conversion of a fixed device into a draw-out device				
Device	DMX 3 /DMX3			

Control auxiliaries

Supply	Shunt trips	Undervoltage releases	Delayed undervoltage releases	Motor operators	Closing coils

Locking options

	Key locking in "open" position	Key locking in "draw-out" position	Door locking	Padlocking in "open" position
Ronis lock	28830	28833		
Profalux lock	28831	28832		
2 hole support frame for above locks	28828			
Left-hand and right-hand side mounting			28820	
Padlocking system for ACBs			28821	
Padlocking system for safety shutters				28826

Equipment for supply invertors

	Interlocking mecanism	Interlocking cable						Automation control unit	
		Type 1	Type 2	Type 3	Type 4	Type 5	Type 6	Standard	Communicating
DMX ${ }^{3} 2500$	28864	28920	28921	28921	28921	28921	28921	26193	26194
DMX ${ }^{3} 4000$	28865								

Accessories for connexion with bars

Accessories	Connexion	DMX ${ }^{3} 2500$				DMX ${ }^{3} 4000$			
		Fixed version		Draw-out version		Fixed version		Draw-out version	
		3P	4P	3P	4P	3P	4P	3P	4P
Rear terminals	Flat	28884	28885			28892	28893		
	Vertical	28882	28883	28896	28897			28894	28895
	Horizontal			28896	28897			28894	28895
Spreaders	Flat	28886	28887			28886	28887		
	Vertical	28888	28889			28888	28889		
	Horizontal	28890	28891			28890	28891		

626129

626117

DMX-E AIR CIRCUIT BREAKERS

		DMX-E 55				DMX-E 65			
Icu (415 V AC)		55 kA				65 kA			
Version		Fixed		Draw-out		Fixed		Draw-out	
Poles		3P	4P	3P	4P	3P	4P	3P	4P
$\ln (\mathrm{A})$	800	626002	626012	626022	626032	626042	626052	626062	626072
	1000	626003	626013	626023	626033	626043	626053	626063	626073
	1250	626004	626014	626024	626034	626044	626054	626064	626074
	1600	626005	626015	626025	626035	626045	626055	626065	626075
	2000					626046	626056	626066	626076
	2500					626047	626057	626067	626077

		DMX-E 80				DMX-E 100			
Icu 141	AC)	80 kA				100 kA			
Version		Fixed		Draw-out		Fixed		Draw-out	
Poles		3P	4P	3P	4P	3P	4P	3P	4P
$\ln (\mathrm{A})$	2000	626086	626096	626106	626116	626126	626136	626146	626156
	2500	626087	626097	626107	626117	626127	626137	626147	626157
	3200	626088	626098	626108	626118	626128	626138	626148	626158
	4000	626089	626099	626109	626119	626129	626139	626149	626159

Conversion of a fixed device into a draw-out device

In	Bases for draw-out device								Rear terminals (supplied singly)	
	DMX-E 55		DMX-E 65		DMX-E 80		DMX-E 100			
	3P	4P	3P	4P	3P	4P	3P	4P	Horizontal	Vertical
800 to 1600 A	626386	626387	626386	626387					626330	626330
2000 and 2500 A			626388	626389	626388	626389	626390	626391	626331	626332
3200 and 4000 A					626390	626391	626390	626391	626330	626330

Interlocking mecanism for supply invertors

3 power supplies	$\mathbf{2}$ standard power supplies + 1 standby power supply
626381	626382

2 standard power supplies +1 coupler

Control auxiliaries						
Supply		Shunt trips	Undervoltage releases	Delayed undervoltage releases	Motor operators	Closing coils
DC	24/30 V	626260	626270		626291	626300
	48 V		626271	626281	626292	626301
	60 V				626292	626301
	110 V	626262	626274	626284	626293	626302
	125 V				626293	
	220 V	626264				626304
	250 V	626264			626295	626304
	400 V				626296	
$\begin{gathered} \mathrm{AC} \\ 50 \mathrm{~Hz} \end{gathered}$	110 V	626262	626272	626282	626293	626302
	220 V	626264				
	240 V	626264	626277	626287	626295	626304
	250 V					
	380 V		626279	626289	626296	
	415 V	626265	626279	626289	626296	626305
$\begin{gathered} \mathrm{AC} \\ 60 \mathrm{~Hz} \end{gathered}$	110 V	626262	626273	626283	626293	626302
	220 V	626264				626304
	240 V	626264	626278	626288	626295	626304
	$380 / 415 \mathrm{~V}$	626265	626280	626290	626296	626305

Signalling auxiliaries

Position signal contact	Fault signal contact	True "ready to close" contact	Shunt release action signal contact	Undervoltage release action signal contact
626311	626317	626318	626315	626316

Locking options

For lock (not supplied)	Key locking in "open" position	Key locking in "draw-out" position	Door locking

Accessories

Rating mis-insertion device	Operation counter	Test box
626320	626324	626379

25018

25059

DPX CIRCUIT BREAKERS AND DPX-I TRIP-FREE SWITCHES

DPX-E 125 and DPX 125

Icu	V)*	16 kA				25 kA		36 kA		
Poles		1P	3P	$3 P+1 / 2 N$	4P	3P	4P	3P	$3 P+1 / 2 N$	4P
$\begin{aligned} & \text { In } \\ & (A) \end{aligned}$	16	25000	25016		25024	25036	25044	25050		25058
	20	25001								
	25	25002	25017		25025	25037	25045	25051		25059
	32	25003								
	40	25004	25018		25026	25038	25046	25052		25060
	50	25005								
	63	25006	25019		25027	25039	25047	25053		25061
	80	25007								
	100	25008	25020		25028	25040	25048	25054		25062
	125	25009	25021	25023	25029	25041	25049	25055	25057	25063

* 230 V for 1 P devices

DPX 160										
Icu (400 V)		25 kA			36 kA			50 kA		
Poles		3P	$3 P+1 / 2 N$	4P	3P	$3 P+1 / 2 N$	4P	3P	$3 P+1 / 2 N$	4P
$\ln (\mathrm{A})$	40							25162		25170
	63	25123		25131	25149		25157	25163		25171
	100	25124		25132	25150		25158	25164		25172
	160	25125	25127	25133	25151	25153	25159	25165	25167	25173

DPX 250 ER										
Icu 14		25 kA			36 kA			50 kA		
Poles		3P	$3 \mathrm{P}+1 / 2 \mathrm{~N}$	4P	3P	$3 \mathrm{P}+1 / 2 \mathrm{~N}$	4P	3P	$3 \mathrm{P}+1 / 2 \mathrm{~N}$	4P
$\ln (\mathrm{A})$	100	25204		25214	25224		25234	25244		25254
	160	25205		25215	25225		25235	25245		25255
	250	25206	25209	25216	25226	25229	25236	25246	25249	25256

25423

25632

25732

DPX 250

Relea		Thermal magnetic						Electronic			
Icu 140		36 kA			70 kA			36 kA		70 kA	
Poles		3P	$3 \mathrm{P}+1 / 2 \mathrm{~N}$	4P	3P	$3 \mathrm{P}+1 / 2 \mathrm{~N}$	4P	3P	4P	3P	4P
In (A)	40	25328		25345	25352		25369	25401	25407	25413	25419
	63	25329		25346	25353		25370				
	100	25330		25347	25354		25371	25403	25409	25415	25421
	160	25331	25341	25348	25355		25372	25404	25410	25416	25422
	250	25332	25342	25349	25356	25366	25373	25405	25411	25417	25423

DPX 630

Relea		Thermal magnetic						Electronic			
Icu 140		36 kA			70 kA			36 kA		70 kA	
Poles		3P	$3 \mathrm{P}+1 / 2 \mathrm{~N}$	4P	3P	$3 \mathrm{P}+1 / 2 \mathrm{~N}$	4P	3 P	4P	3P	4 P
$\ln (\mathrm{A})$	250	25521		25536				25601	25605		
	320	25522	25532	25537	25542	25552	25557				
	400	25523	25533	25538	25543	25553	25558	25602	25606	25610	25614
	500	25525	25535	25539	25545	25555	25559				
	630	25524	25534	25540	25544	25554	25560	25603	25607	25611	25615

DPX 1250-1600

Release		Thermal magnetic				Electronic S1				Electronic 52			
Icu 14		50 kA		70 kA		50 kA		70 kA		50 kA		70 kA	
Poles		3P	4P	3P	4P	3P	4P	3 P	4P	3P	4P	3 P	4P
In (A)	800	25802	25809	25816	25823	25702	25706	25710	25714	25726	25730	25734	25738
	1000	25803	25810	25817	25824								
	1250	25804	25811	25818	25825	25703	25707	25711	25715	25727	25731	25735	25739
	1600					25704	25708	25712	25716	25728	25732	25736	25740

DPX-I trip-free switches												
In (A)	DPX-I 125		DPX-I 160		DPX-I 250 ER		DPX-I 250		DPX-I 630		DPX-I 1600	
	3P	4P	3 P	4P	3P	4 P						
125	25098	25099										
160			25198	25199								
250					25298	25299	25398	25399				
400									25586	25587		
630									25588	25589		
800											25794	25795
1250											25796	25797
1600											25798	25799

Equipment and accessories for plug-in and draw-out version

26250

26211

26279

26173

26190

Accessories, rotary and motor driven handles

		$\begin{gathered} \text { DPX } 125 \\ \text { DPX-I } 125 \end{gathered}$	$\begin{aligned} & \text { DPX } 160 \\ & \text { DPX-I } 160 \end{aligned}$	DPX 250 ER	DPX 250	DPX 630	DPX 1600
Sealable terminal shields	3P	26205	26215	26285	262 26/28 ${ }^{(1)}$	26244	26264
	4P	26206	26216	26286	262 27/29 ${ }^{(1)}$	26245	26265
Insulated shield	set of 3				26230	26230	26266
Padlocking accessory		26200	26210	26210	26221	26240	26260
Cage terminal		Supplied	26218	26288	26235	26250	26269
High capacity cage terminal			26219			26251	26270
Adaptator for lug					26231	26246	
Extended front terminals			26217		26232	26247	$26267 / 68^{(2)}$
Spreaders	3P			26290	26233	26248	26273
	4P			26291	26234	26249	26274
Swivel rear terminals	3P	26300	26310	26510	26331	26350	
	4P	26301	26311	26511	26332	26351	
Flat rear terminals	3P				26527	26352	$26380 / 81^{(3)}$
	4P				26528	26353	$26382 / 83^{[3]}$
Direct rotary handle	standard	26201	26211	26211	26222	26241	26261
	for emergency use	26203	26213	26213	$26224^{(4)}$	$26224^{(4)}$	
	Eurolocks locking accessory	26225	26225	26225		26225	26225
Vari-depth handle	standard	26275	26277	26277	26279	26281	26283
	for emergency use	26276	26278	26278	$26280^{(4)}$	$26282^{(4)}$	26284
	Eurolocks locking accessory	26292	26292	26292	26292	26292	26292
	Profalux locking accessory	26293	26293	26293	26293	26293	26293
	Ronis locking accessory	26294	26294	26294	26294	26294	26294
Motor driven handle	24 V				26130	26140	
	230 V				26134	26144	26154
	Ronis locking accessory				26159	26159	26159

Auxiliaries

Supply	Auxiliary contact or fault signal	Shunt releases	Undervoltage releases		Time lag undervoltage releases		
			$\begin{gathered} \text { for DPX 125, } \\ \text { DPX-IS 250/630 } \end{gathered}$	for DPX 160 to DPX 1600, DX-IS 1600, DPX-I	Time lag module	$\begin{aligned} & \text { Release for } \\ & \text { DPX-IS, } \\ & \text { DPX 125/630 } \end{aligned}$	Releases for DPX 250 ER to DPX 1600
	26160					26175	26185
24 V AC		26164	26170	26180			
24 V DC		26164	26171	26181			
48 V AC		26165					
48 V DC		26165	26172	26182			
110 V AC		26166	26176	26186			
110 V DC		26166					
230 V AC		26167	26173	26183	26190		
230 V DC		26167					
400 V AC		26168	26174	26184	26191		
400 V DC		26168					

[^1]

27104

27150

27176

DRX CIRCUIT BREAKERS

DRX 100									
Icu (415 V)		10 kA		20 kA		25 kA	35 kA		
Poles		3 P	4P	3 P	4P	1P	2P	3P	4P
	15	27000	27010	27020	27030	27040	27050	27060	27070
	20	27001	27011	27021	27031	27041	27051	27061	27071
	25	27002	27012	27022	27032	27042	27052	27062	27072
	30	27003	27013	27023	27033	27043	27053	27063	27073
$\ln (\mathrm{A})$	40	27004	27014	27024	27034	27044	27054	27064	27074
	50	27005	27015	27025	27035	27045	27055	27065	27075
	60	27006	27016	27026	27036	27046	27056	27066	27076
	75	27007	27017	27027	27037	27047	27057	27067	27077
	100	27008	27018	27028	27038	27048	27058	27068	27078

DRX 250							
Icu (415 V)		18 kA		25 kA		36 kA	
Poles		3P	4P	3P	4P	3P	4P
$\ln (\mathrm{A})$	125	27100	27106	27112	27118	27124	27130
	150	27101	27107	27113	27119	27125	27131
	175	27102	27108	27114	27120	27126	27132
	200	27103	27109	27115	27121	27127	27133
	225	27104	27110	27116	27122	27128	27134

Electrical accessories

| Supply | | Auxiliariy contact bloc | | | Shunt trips |
| :--- | :---: | :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}Undervoltage

releases\end{array}\right]\)

Connection accessories, padlocking and rotary handles

Device	DRX 100			DRX 250	
Poles	2P	3P	4P	3P	4P
Insulating shields		27181	27182	27181	27182
Seasable terminal shields	27191	27183	27184	27185	27186
Up to 50 A		27170	27172		
Cage terminal* from 60 to 100 A		27171	27173		
Up to 250 A				27174	27175
Padlocking system (up to 3 padlocks)	27180			27181	
Rotary handle Direct on DRX	27176			27178	
Rotary hande Vari-depth handle	27177			27179	

[^2]

26670

25598

22515

DPX-IS AND VISTOP ISOLATING SWITCHES

DPX-IS isolating switches

Model	In (A)	With release						Without release					
		Front handle		Right-hand side handle		Left-hand side handle		Front handle		Right-hand side handle		Left-hand side handle	
		3P	4P										
DPX-IS 250	63	26630	26634	26640	26644	26650	26654						
	100	26631	26635	26641	26645	26651	26655						
	160	26632	26636	26642	26646	26652	26656	26602	26606	26612	26616	26622	26626
	250	26633	26637	26643	26647	26653	26657	26603	26607	26613	26617	26623	26627
DPX-IS 630	400	26672	26674	26676	26678	26680	26682	26660	26662	26664	26666	26668	26670
	630	26673	26675	26677	26679	26681	26683	26661	26663	26665	26667	26669	26671
DPX-IS 1600	800	26591	26595										
	1000	26592	26596										
	1250	26593	26597										
	1600	26594	26598										

Vistop isolating switches

Mounting	$\ln (\mathrm{A})$	Front handle			Side handle			Auxiliary contact for on/off signalling
		2 P	3 P	4 P	2 P	3 P	4 P	
On faceplate	32	22498	22500	22502	22503	22505	22507	
On faceplate or rail	63		22512	22515		22516	22518	22707
	100		22520	22522		22525	22527	
	125		22534	22539		22544	22546	
	160		22551	22553		22554	22556	

Accessories

		DPX-IS 250	DPX-IS 630	DPX-IS 1600	Vistop 63 to 160 A
Direct handle for emergency use	front and right-hand side	26689	26689		
	left-hand side	26690	26690		
Vari-depth handle	for standard handle	26686	26686	26589	
	for emergency handle	26687	26687	26590	
Front external handle					22732
Palock	Ronis	26692	26697		
Locking accessories for vari-depth handle	Euro locks			26292	
	Profalux			26293	
	Ronis			26294	
Terminal shields	2P	26287	26245	26264	
	3 P			26265	
Insulation shields				26266	

20892

20875

3000 FORMS

Forms equipment selection									
Designation	Complementary information	Forms of separation and type of connection (terminals)							
			front termina			front terminal	rear terminal		
Top or bottom horizontal separation kit	width 24 modules	20891				20891	20891	20891	20891
	width 36 modules	20899				20899	20899	20899	20899
Front panel separation DMX ${ }^{3} 2500$	width 24 modules	20808			20808				
Front panel separation DMX 4000	width 36 modules	20809			20809				
Front panel side separation					20868		20868		20868
Horizontal separation for functional units	width 24 modules			20892	20892	20892	20892	20892	20892
	width 36 modules			20592	20592	20592	20592	20592	20592
Kit for vertical separation between enclosure and cable sleeve	depth 475 mm		20827			20827		20827	
	depth 725 mm		20828			20828		20828	
	depth 975 mm		20829			20829		20829	
Kit for vertical separation between internal cable sleeve and external cable sleeve	depth 475 mm		20837			20837		20837	
	depth 725 mm		20838			20838		20838	
	depth 975 mm		20839			20839		20839	
L-shaped separation kit for horizontal busbars 1600 A max.	depth 475 mm		20536			20536		20536	
U-shaped separation kit for horizontal busbars 1600 A max.	depth 725 mm		20537			20537		20537	
L-shaped separation kit for horizontal busbars 4000 A max.	depth 725 mm		20538			20538		20538	
U-shaped separation kit for horizontal busbars 4000 A max.	depth 975 mm		20539			20539		20539	
U-shaped separation kit for horizontal busbars 1600 A max.	internal cable sleeves depth 475 mm		20870			20870		20870	
	internal cable sleeves depth 725 mm		20871			20871		20871	
U-shaped separation kit for horizontal busbars 4000 A max.	internal cable sleeves depth 725 mm		20872			20872		20872	
	internal cable sleeves depth 975 mm		20876			20876		20876	

Forms equipment selection (continued)

Designation	Complementary information	Forms of separation and type of connection (terminals)							
		rear terminal	front terminal	rear terminal	rear terminal	front terminal	rear terminal	front terminal	rear terminal
U-shaped separation kit for horizontal busbars 1600 A max.	external cable sleeves depth 475 mm		20873			20873		20873	
	external cable sleeves depth 725 mm		20874			20874		20874	
U-shaped separation kit for horizontal busbars 4000 A max.	external cable sleeves depth 725 mm		20875			20875		20875	
	external cable sleeves depth 975 mm		20886			20886		20886	
Side vertical divider for DPX 1600			20596			20596		20596	
Side partition with and caps for functional units separation	height 200 mm					20597		20597	
	height 300 mm					20598		20598	
	height 400 mm					20599		20599	
Vertical separation for rear busbars	depth 725 mm			20848			20848		
	depth 975 mm			20849			20849		
Separation for rear busbars	height 200 mm			20877			20877		
	height 300 mm			20878			20878		
	height 400 mm			20879			20879		
Horizontal busbar separation	depth 725 mm			20893			20893		
	depth 975 mm			20894			20894		20894
Rear vertical separation							20869		20869
DPX compartment kit	height 200 mm								20887
	height 300 mm								20888
	height 400 mm								20889
Separation for cell without horizontal busbars	to close last DPX compartment								20895
Bottom busbar area closure									20896
Rear separation divider for space compartment									20897
DMX ${ }^{3}$, DMX ${ }^{3}$-I 2500 compartment kit	width 24 modules		20818	20818		20818	20818	20818	20818
DMX ${ }^{3}$, DMX ${ }^{3}$-I 4000, DMX 3-L compartment kit	width 36 modules		20819	20819		20819	20819	20819	20819

POWER GUIDE:

A complete set of technical documentation

01 | Sustainable
development

02 | Power balance and choice of power supply solutions

03 | Electrical
energy supply

04 | Sizing conductors
and selecting
protection devices

05 | Breaking
and protection
devices

06 | Electrical
hazards and
protecting people

07 | Protection
against lightning
effects

11 | Cabling components and control auxiliaries

12 | Busbars

08 | Protection against external disturbances

09 | Operating functions

10 | Enclosures and assembly certification and distribution

13 | Transport and distribution inside an installation

Annexes
Glossary
Lexicon

Lllegrand

World Headquarters and International Department 87045 Limoges Cedex - France
శ : + 33 (0) 555068787
Fax : + 33 (0) 555067455

[^0]: ^ Draw-out DPX 630 immobilised using padlocks

[^1]: (1) Long/short | (2) In $\leqslant 1250$ A: Cat.No 26267 - In = 1600 A: Cat.No 26268 |(3) Short/long
 (4) To be fit on Cat.No 26222

[^2]: * Available by set of 60 pieces: Cat.No 27192 (up to 50 A), Cat.No 27193 (60 to 100 A), Cat.No 27194 (up to 250 A)

